SAF
|
Particle filtering based 3D multi-target tracker (SAF_TRACKER_MODULE) More...
#include "saf_tracker.h"
#include "../../modules/saf_utilities/saf_utilities.h"
#include "saf_externals.h"
Go to the source code of this file.
Data Structures | |
struct | M6 |
Union struct for 3-D mean values. More... | |
struct | P66 |
Union struct for 3-D variance values. More... | |
struct | MCS_data |
Monte-Carlo Sample (particle) structure. More... | |
struct | tracker3d_data |
Main structure for tracker3d. More... | |
Macros | |
#define | TRACKER3D_MAX_NUM_TARGETS ( 24 ) |
Spits out tracker status info to the terminal. | |
#define | TRACKER3D_MAX_NUM_EVENTS ( 24 ) |
Maximum number of possible events during update. | |
#define | TRACKER3D_MAX_NUM_PARTICLES ( 100 ) |
Maximum number of particles. | |
Typedefs | |
typedef void * | voidPtr |
Void pointer (just to improve code readability when working with arrays of handles) | |
Functions | |
void | tracker3d_particleCreate (void **phPart, float W0, float dt) |
Creates an instance of a particle / Monte-Carlo Sample. | |
void | tracker3d_particleReset (void *hPart) |
Resets a particle structure to defaults. | |
void | tracker3d_particleCopy (void *hPart1, void *hPart2) |
Copies particle structure "hPart1" into structure "hPart2". | |
void | tracker3d_particleDestroy (void **phPart) |
Destroys an instance of a particle / Monte-Carlo Sample. | |
void | tracker3d_predict (void *const hT3d, int Tinc) |
Prediction step. | |
void | tracker3d_update (void *const hT3d, float *Y, int Tinc) |
Prediction update. | |
int | tracker3d_getMaxParticleIdx (void *const hT3d) |
Returns the index of the most important particle. | |
void | resampstr (voidPtr *SS, int NP, int *s) |
Stratified resampling - returns a new set of indices according to the probabilities P. | |
float | eff_particles (voidPtr *SS, int NP) |
Estimate the number of effective particles. | |
void | normalise_weights (voidPtr *SS, int NP) |
Normalises the weights of the given particles. | |
void | kf_predict6 (float M[6], float P[6][6], float A[6][6], float Q[6][6]) |
Perform Kalman Filter prediction step. | |
void | kf_update6_create (void **const phUp6) |
Creates helper structure for kf_update6() | |
void | kf_update6_destroy (void **const phUp6) |
Destroys helper structure for kf_update6() | |
void | kf_update6 (void *const hUp6, float X[6], float P[6][6], float y[3], float H[3][6], float R[3][3], float X_out[6], float P_out[6][6], float *LH) |
Kalman Filter update step. | |
float | gamma_cdf (float x, float gam, float beta, float mu) |
Cumulative density function of a Gamma distribution. | |
void | lti_disc (float *F, int len_N, int len_Q, float *opt_L, float *opt_Qc, float dt, float *A, float *Q) |
LTI_DISC Discretize LTI ODE with Gaussian Noise. | |
float | gauss_pdf3 (void *const hUp6, float X[3], float M[3], float S[3][3]) |
Multivariate Gaussian PDF. | |
int | categ_rnd (float *P, int len_P) |
Draws samples from a given one dimensional discrete distribution. | |
Particle filtering based 3D multi-target tracker (SAF_TRACKER_MODULE)
Based on the RBMCDA [1] MATLAB toolbox (GPLv2 license) by Simo Sa"rkka" and Jouni Hartikainen (Copyright (C) 2003-2008): https://users.aalto.fi/~ssarkka/#softaudio
More information regarding this specific implementation can be found in [2]
Definition in file saf_tracker_internal.h.
#define TRACKER3D_MAX_NUM_EVENTS ( 24 ) |
Maximum number of possible events during update.
Definition at line 67 of file saf_tracker_internal.h.
#define TRACKER3D_MAX_NUM_PARTICLES ( 100 ) |
Maximum number of particles.
Definition at line 69 of file saf_tracker_internal.h.
#define TRACKER3D_MAX_NUM_TARGETS ( 24 ) |
Spits out tracker status info to the terminal.
Maximum number of targets that can be tracked
Definition at line 65 of file saf_tracker_internal.h.
typedef void* voidPtr |
Void pointer (just to improve code readability when working with arrays of handles)
Definition at line 77 of file saf_tracker_internal.h.
int categ_rnd | ( | float * | P, |
int | len_P ) |
Draws samples from a given one dimensional discrete distribution.
[in] | P | Discrete distribution; len_P x 1 |
[in] | len_P | length of P |
Original Copyright (C) 2002 Simo Särkkä, 2008 Jouni Hartikainen (GPLv2)
Definition at line 908 of file saf_tracker_internal.c.
float eff_particles | ( | voidPtr * | SS, |
int | NP ) |
Estimate the number of effective particles.
[in] | SS | Array of particle structures; NP x 1 |
[in] | NP | Number of particle structures |
Original Copyright (C) 2003 Simo Särkkä, 2008 Jouni Hartikainen (GPLv2)
Definition at line 560 of file saf_tracker_internal.c.
float gamma_cdf | ( | float | x, |
float | gam, | ||
float | beta, | ||
float | mu ) |
Cumulative density function of a Gamma distribution.
[in] | x | Locations where to evaluate the CDF |
[in] | gam | Parameter of the distribution |
[in] | beta | Parameter of the distribution |
[in] | mu | Mean of the distribution |
Original Copyright (C) 2003 Simo Särkkä, 2008 Jouni Hartikainen (GPLv2)
Definition at line 740 of file saf_tracker_internal.c.
float gauss_pdf3 | ( | void *const | hUp6, |
float | X[3], | ||
float | M[3], | ||
float | S[3][3] ) |
Multivariate Gaussian PDF.
Calculate values of PDF (Probability Density Function) of multivariate Gaussian distribution: N(X | M, S)
[in] | hUp6 | Handle for helper structure |
[in] | X | Values |
[in] | M | Mean of distibution or values as 3x3 matrix. |
[in] | S | 3x3 covariance matrix |
Original Copyright (C) 2002 Simo Särkkä (GPLv2)
Definition at line 870 of file saf_tracker_internal.c.
void kf_predict6 | ( | float | M[6], |
float | P[6][6], | ||
float | A[6][6], | ||
float | Q[6][6] ) |
Perform Kalman Filter prediction step.
The model is: x[k] = A*x[k-1] + B*u[k-1] + q, q ~ N(0,Q). The predicted state is distributed as follows: p(x[k] | x[k-1]) = N(x[k] | A*x[k-1], Q[k-1])
The predicted mean x-[k] and covariance P-[k] are calculated with the following equations: m-[k] = A*x[k-1] P-[k] = A*P[k-1]*A' + Q.
[in,out] | M | Mean state estimate of previous step |
[in,out] | P | State covariance of previous step |
[in] | A | Transition matrix of discrete model |
[in] | Q | Process noise of discrete model |
Original Copyright (C) 2002-2006 Simo Särkkä, 2007 Jouni Hartikainen (GPLv2)
Definition at line 601 of file saf_tracker_internal.c.
void kf_update6 | ( | void *const | hUp6, |
float | X[6], | ||
float | P[6][6], | ||
float | y[3], | ||
float | H[3][6], | ||
float | R[3][3], | ||
float | X_out[6], | ||
float | P_out[6][6], | ||
float * | LH ) |
Kalman Filter update step.
Kalman Filter model is: x[k] = A*x[k-1] + B*u[k-1] + q, q ~ N(0,Q) y[k] = H*x[k] + r, r ~ N(0,R)
Prediction step of Kalman filter computes predicted mean m-[k] and covariance P-[k] of state: p(x[k] | y[1:k-1]) = N(x[k] | m-[k], P-[k])
See for instance kf_predict6() how m-[k] and P-[k] are calculated.
Update step computes the posterior mean m[k] and covariance P[k] of state given new measurement: p(x[k] | y[1:k]) = N(x[k] | m[k], P[k])
Innovation distribution is defined as: p(y[k] | y[1:k-1]) = N(y[k] | IM[k], IS[k])
Updated mean x[k] and covarience P[k] are given by the following equations (not the only possible ones): v[k] = y[k] - H[k]*m-[k] S[k] = H[k]*P-[k]*H[k]' + R[k] K[k] = P-[k]*H[k]'*[S[k]]^(-1) m[k] = m-[k] + K[k]*v[k] P[k] = P-[k] - K[k]*S[k]*K[k]'
[in] | hUp6 | Handle for helper structure |
[in] | X | Nx1 mean state estimate after prediction step |
[in] | P | NxN state covariance after prediction step |
[in] | y | Dx1 measurement vector. |
[in] | H | Measurement matrix. |
[in] | R | Measurement noise covariance. |
[out] | X_out | Updated state mean |
[out] | P_out | Updated state covariance |
[out] | LH | (&) Predictive probability (likelihood) of measurement. |
Original Copyright (C) 2002, 2003 Simo Särkkä, 2007 Jouni Hartikainen (GPLv2)
Definition at line 653 of file saf_tracker_internal.c.
void kf_update6_create | ( | void **const | phUp6 | ) |
Creates helper structure for kf_update6()
Definition at line 630 of file saf_tracker_internal.c.
void kf_update6_destroy | ( | void **const | phUp6 | ) |
Destroys helper structure for kf_update6()
Definition at line 638 of file saf_tracker_internal.c.
void lti_disc | ( | float * | F, |
int | len_N, | ||
int | len_Q, | ||
float * | opt_L, | ||
float * | opt_Qc, | ||
float | dt, | ||
float * | A, | ||
float * | Q ) |
LTI_DISC Discretize LTI ODE with Gaussian Noise.
Discretize LTI ODE with Gaussian Noise. The original ODE model is in form: dx/dt = F x + L w, w ~ N(0,Qc)
Result of discretization is the model: x[k] = A x[k-1] + q, q ~ N(0,Q)
Which can be used for integrating the model exactly over time steps, which are multiples of dt.
[in] | F | Square feedback matrix; FLAT: len_N x len_N |
[in] | len_N | Size of square matrix 'F' |
[in] | len_Q | Size of square matrix 'opt_Qc' |
[in] | opt_L | Noise effect matrix (optional, set to NULL for default values); FLAT: len_N x len_Q |
[in] | opt_Qc | Diagonal Spectral Density (optional, set to NULL for default values); FLAT: len_Q x len_Q |
[in] | dt | Time Step |
[out] | A | Transition matrix; FLAT: len_N x len_N |
[out] | Q | Discrete Process Covariance; FLAT: len_N x len_N |
Original Copyright (C) 2002, 2003 Simo Särkkä (GPLv2)
Definition at line 755 of file saf_tracker_internal.c.
void normalise_weights | ( | voidPtr * | SS, |
int | NP ) |
Normalises the weights of the given particles.
[in,out] | SS | Array of particle structures; NP x 1 |
[in] | NP | Number of particle structures |
Original Copyright (C) 2008 Jouni Hartikainen (GPLv2)
Definition at line 579 of file saf_tracker_internal.c.
void resampstr | ( | voidPtr * | SS, |
int | NP, | ||
int * | s ) |
Stratified resampling - returns a new set of indices according to the probabilities P.
Sorted re-sampling is slower but has slightly smaller variance. Stratified resampling is unbiased, almost as fast as deterministic resampling, and has only slightly larger variance.
In stratified resampling indices are sampled using random numbers [1] u_j~U[(j-1)/n,j/n], where n is length of P. Compare this to simple random resampling where u_j~U[0,1].
[in] | SS | Array of particle structures; NP x 1 |
[in] | NP | Number of particle structures |
[out] | s | Resampled indices; NP x 1 |
Original Copyright (c) 2003-2004 Aki Vehtari (GPLv2)
Definition at line 526 of file saf_tracker_internal.c.
int tracker3d_getMaxParticleIdx | ( | void *const | hT3d | ) |
Returns the index of the most important particle.
[in] | hT3d | tracker3d handle |
Definition at line 499 of file saf_tracker_internal.c.
void tracker3d_particleCopy | ( | void * | hPart1, |
void * | hPart2 ) |
Copies particle structure "hPart1" into structure "hPart2".
[in] | hPart1 | Particle structure 1 |
[in] | hPart2 | Particle structure 2 |
Definition at line 165 of file saf_tracker_internal.c.
void tracker3d_particleCreate | ( | void ** | phPart, |
float | W0, | ||
float | dt ) |
Creates an instance of a particle / Monte-Carlo Sample.
[in] | phPart | (&) address of particle structure |
[in] | W0 | Importance weight PRIOR |
[in] | dt | Time step |
Definition at line 128 of file saf_tracker_internal.c.
void tracker3d_particleDestroy | ( | void ** | phPart | ) |
Destroys an instance of a particle / Monte-Carlo Sample.
[in] | phPart | (&) address of particle structure |
Definition at line 185 of file saf_tracker_internal.c.
void tracker3d_particleReset | ( | void * | hPart | ) |
Resets a particle structure to defaults.
[in] | hPart | Particle structure |
Definition at line 149 of file saf_tracker_internal.c.
void tracker3d_predict | ( | void *const | hT3d, |
int | Tinc ) |
Prediction step.
[in] | hT3d | tracker3d handle |
[in] | Tinc | Number of time steps to increment by |
Definition at line 202 of file saf_tracker_internal.c.
void tracker3d_update | ( | void *const | hT3d, |
float * | Y, | ||
int | Tinc ) |
Prediction update.
[in] | hT3d | tracker3d handle |
[in] | Y | New observation/measurement; 3 x 1 |
[in] | Tinc | Number of time steps to increment by |
Definition at line 357 of file saf_tracker_internal.c.