SAF
Loading...
Searching...
No Matches
saf_tracker_internal.h File Reference

Particle filtering based 3D multi-target tracker (SAF_TRACKER_MODULE) More...

Go to the source code of this file.

Data Structures

struct  M6
 Union struct for 3-D mean values. More...
 
struct  P66
 Union struct for 3-D variance values. More...
 
struct  MCS_data
 Monte-Carlo Sample (particle) structure. More...
 
struct  tracker3d_data
 Main structure for tracker3d. More...
 

Macros

#define TRACKER3D_MAX_NUM_TARGETS   ( 24 )
 Spits out tracker status info to the terminal.
 
#define TRACKER3D_MAX_NUM_EVENTS   ( 24 )
 Maximum number of possible events during update.
 
#define TRACKER3D_MAX_NUM_PARTICLES   ( 100 )
 Maximum number of particles.
 

Typedefs

typedef void * voidPtr
 Void pointer (just to improve code readability when working with arrays of handles)
 

Functions

void tracker3d_particleCreate (void **phPart, float W0, float dt)
 Creates an instance of a particle / Monte-Carlo Sample.
 
void tracker3d_particleReset (void *hPart)
 Resets a particle structure to defaults.
 
void tracker3d_particleCopy (void *hPart1, void *hPart2)
 Copies particle structure "hPart1" into structure "hPart2".
 
void tracker3d_particleDestroy (void **phPart)
 Destroys an instance of a particle / Monte-Carlo Sample.
 
void tracker3d_predict (void *const hT3d, int Tinc)
 Prediction step.
 
void tracker3d_update (void *const hT3d, float *Y, int Tinc)
 Prediction update.
 
int tracker3d_getMaxParticleIdx (void *const hT3d)
 Returns the index of the most important particle.
 
void resampstr (voidPtr *SS, int NP, int *s)
 Stratified resampling - returns a new set of indices according to the probabilities P.
 
float eff_particles (voidPtr *SS, int NP)
 Estimate the number of effective particles.
 
void normalise_weights (voidPtr *SS, int NP)
 Normalises the weights of the given particles.
 
void kf_predict6 (float M[6], float P[6][6], float A[6][6], float Q[6][6])
 Perform Kalman Filter prediction step.
 
void kf_update6_create (void **const phUp6)
 Creates helper structure for kf_update6()
 
void kf_update6_destroy (void **const phUp6)
 Destroys helper structure for kf_update6()
 
void kf_update6 (void *const hUp6, float X[6], float P[6][6], float y[3], float H[3][6], float R[3][3], float X_out[6], float P_out[6][6], float *LH)
 Kalman Filter update step.
 
float gamma_cdf (float x, float gam, float beta, float mu)
 Cumulative density function of a Gamma distribution.
 
void lti_disc (float *F, int len_N, int len_Q, float *opt_L, float *opt_Qc, float dt, float *A, float *Q)
 LTI_DISC Discretize LTI ODE with Gaussian Noise.
 
float gauss_pdf3 (void *const hUp6, float X[3], float M[3], float S[3][3])
 Multivariate Gaussian PDF.
 
int categ_rnd (float *P, int len_P)
 Draws samples from a given one dimensional discrete distribution.
 

Detailed Description

Particle filtering based 3D multi-target tracker (SAF_TRACKER_MODULE)

Based on the RBMCDA [1] MATLAB toolbox (GPLv2 license) by Simo Sa"rkka" and Jouni Hartikainen (Copyright (C) 2003-2008): https://users.aalto.fi/~ssarkka/#softaudio

More information regarding this specific implementation can be found in [2]

See also
[1] Sa"rkka", S., Vehtari, A. and Lampinen, J., 2004, June. Rao- Blackwellized Monte Carlo data association for multiple target tracking. In Proceedings of the seventh international conference on information fusion (Vol. 1, pp. 583-590). I.
[2] McCormack, L., Politis, A. Sa"rkka", S., and Pulkki, V., 2021. Real-Time Tracking of Multiple Acoustical Sources Utilising Rao-Blackwellised Particle Filtering. In 29th European Signal Processing Conference (EUSIPCO), (pp. 206-210).
Author
Leo McCormack
Date
12.08.2020
License
GNU GPLv2

Definition in file saf_tracker_internal.h.

Macro Definition Documentation

◆ TRACKER3D_MAX_NUM_EVENTS

#define TRACKER3D_MAX_NUM_EVENTS   ( 24 )

Maximum number of possible events during update.

Definition at line 67 of file saf_tracker_internal.h.

◆ TRACKER3D_MAX_NUM_PARTICLES

#define TRACKER3D_MAX_NUM_PARTICLES   ( 100 )

Maximum number of particles.

Definition at line 69 of file saf_tracker_internal.h.

◆ TRACKER3D_MAX_NUM_TARGETS

#define TRACKER3D_MAX_NUM_TARGETS   ( 24 )

Spits out tracker status info to the terminal.

Maximum number of targets that can be tracked

Definition at line 65 of file saf_tracker_internal.h.

Typedef Documentation

◆ voidPtr

typedef void* voidPtr

Void pointer (just to improve code readability when working with arrays of handles)

Definition at line 77 of file saf_tracker_internal.h.

Function Documentation

◆ categ_rnd()

int categ_rnd ( float * P,
int len_P )

Draws samples from a given one dimensional discrete distribution.

Parameters
[in]PDiscrete distribution; len_P x 1
[in]len_Plength of P

Original Copyright (C) 2002 Simo Särkkä, 2008 Jouni Hartikainen (GPLv2)

Definition at line 908 of file saf_tracker_internal.c.

◆ eff_particles()

float eff_particles ( voidPtr * SS,
int NP )

Estimate the number of effective particles.

Warning
This function assumes that the weights have been normalised!
Parameters
[in]SSArray of particle structures; NP x 1
[in]NPNumber of particle structures
Returns
Number of effective particles

Original Copyright (C) 2003 Simo Särkkä, 2008 Jouni Hartikainen (GPLv2)

Definition at line 560 of file saf_tracker_internal.c.

◆ gamma_cdf()

float gamma_cdf ( float x,
float gam,
float beta,
float mu )

Cumulative density function of a Gamma distribution.

Parameters
[in]xLocations where to evaluate the CDF
[in]gamParameter of the distribution
[in]betaParameter of the distribution
[in]muMean of the distribution
Returns
Cumulative density at the given locations

Original Copyright (C) 2003 Simo Särkkä, 2008 Jouni Hartikainen (GPLv2)

Definition at line 740 of file saf_tracker_internal.c.

◆ gauss_pdf3()

float gauss_pdf3 ( void *const hUp6,
float X[3],
float M[3],
float S[3][3] )

Multivariate Gaussian PDF.

Calculate values of PDF (Probability Density Function) of multivariate Gaussian distribution: N(X | M, S)

Note
This has been hard-coded for N=3, but a general version should be quite straight-forward (just not needed yet)...
Parameters
[in]hUp6Handle for helper structure
[in]XValues
[in]MMean of distibution or values as 3x3 matrix.
[in]S3x3 covariance matrix
Returns
Probability of X.

Original Copyright (C) 2002 Simo Särkkä (GPLv2)

Definition at line 870 of file saf_tracker_internal.c.

◆ kf_predict6()

void kf_predict6 ( float M[6],
float P[6][6],
float A[6][6],
float Q[6][6] )

Perform Kalman Filter prediction step.

The model is: x[k] = A*x[k-1] + B*u[k-1] + q, q ~ N(0,Q). The predicted state is distributed as follows: p(x[k] | x[k-1]) = N(x[k] | A*x[k-1], Q[k-1])

The predicted mean x-[k] and covariance P-[k] are calculated with the following equations: m-[k] = A*x[k-1] P-[k] = A*P[k-1]*A' + Q.

Note
This has been hard-coded for N=6 and without 'B' and 'u', but a general version should be quite straight-forward (just not needed yet)...
Parameters
[in,out]MMean state estimate of previous step
[in,out]PState covariance of previous step
[in]ATransition matrix of discrete model
[in]QProcess noise of discrete model

Original Copyright (C) 2002-2006 Simo Särkkä, 2007 Jouni Hartikainen (GPLv2)

Definition at line 601 of file saf_tracker_internal.c.

◆ kf_update6()

void kf_update6 ( void *const hUp6,
float X[6],
float P[6][6],
float y[3],
float H[3][6],
float R[3][3],
float X_out[6],
float P_out[6][6],
float * LH )

Kalman Filter update step.

Kalman Filter model is: x[k] = A*x[k-1] + B*u[k-1] + q, q ~ N(0,Q) y[k] = H*x[k] + r, r ~ N(0,R)

Prediction step of Kalman filter computes predicted mean m-[k] and covariance P-[k] of state: p(x[k] | y[1:k-1]) = N(x[k] | m-[k], P-[k])

See for instance kf_predict6() how m-[k] and P-[k] are calculated.

Update step computes the posterior mean m[k] and covariance P[k] of state given new measurement: p(x[k] | y[1:k]) = N(x[k] | m[k], P[k])

Innovation distribution is defined as: p(y[k] | y[1:k-1]) = N(y[k] | IM[k], IS[k])

Updated mean x[k] and covarience P[k] are given by the following equations (not the only possible ones): v[k] = y[k] - H[k]*m-[k] S[k] = H[k]*P-[k]*H[k]' + R[k] K[k] = P-[k]*H[k]'*[S[k]]^(-1) m[k] = m-[k] + K[k]*v[k] P[k] = P-[k] - K[k]*S[k]*K[k]'

Note
This has been hard-coded for N=6 and without 'K', 'IM' and 'IS', but a general version should be quite straight-forward (just not needed yet).
Parameters
[in]hUp6Handle for helper structure
[in]XNx1 mean state estimate after prediction step
[in]PNxN state covariance after prediction step
[in]yDx1 measurement vector.
[in]HMeasurement matrix.
[in]RMeasurement noise covariance.
[out]X_outUpdated state mean
[out]P_outUpdated state covariance
[out]LH(&) Predictive probability (likelihood) of measurement.

Original Copyright (C) 2002, 2003 Simo Särkkä, 2007 Jouni Hartikainen (GPLv2)

Definition at line 653 of file saf_tracker_internal.c.

◆ kf_update6_create()

void kf_update6_create ( void **const phUp6)

Creates helper structure for kf_update6()

Definition at line 630 of file saf_tracker_internal.c.

◆ kf_update6_destroy()

void kf_update6_destroy ( void **const phUp6)

Destroys helper structure for kf_update6()

Definition at line 638 of file saf_tracker_internal.c.

◆ lti_disc()

void lti_disc ( float * F,
int len_N,
int len_Q,
float * opt_L,
float * opt_Qc,
float dt,
float * A,
float * Q )

LTI_DISC Discretize LTI ODE with Gaussian Noise.

Discretize LTI ODE with Gaussian Noise. The original ODE model is in form: dx/dt = F x + L w, w ~ N(0,Qc)

Result of discretization is the model: x[k] = A x[k-1] + q, q ~ N(0,Q)

Which can be used for integrating the model exactly over time steps, which are multiples of dt.

Parameters
[in]FSquare feedback matrix; FLAT: len_N x len_N
[in]len_NSize of square matrix 'F'
[in]len_QSize of square matrix 'opt_Qc'
[in]opt_LNoise effect matrix (optional, set to NULL for default values); FLAT: len_N x len_Q
[in]opt_QcDiagonal Spectral Density (optional, set to NULL for default values); FLAT: len_Q x len_Q
[in]dtTime Step
[out]ATransition matrix; FLAT: len_N x len_N
[out]QDiscrete Process Covariance; FLAT: len_N x len_N

Original Copyright (C) 2002, 2003 Simo Särkkä (GPLv2)

Definition at line 755 of file saf_tracker_internal.c.

◆ normalise_weights()

void normalise_weights ( voidPtr * SS,
int NP )

Normalises the weights of the given particles.

Parameters
[in,out]SSArray of particle structures; NP x 1
[in]NPNumber of particle structures

Original Copyright (C) 2008 Jouni Hartikainen (GPLv2)

Definition at line 579 of file saf_tracker_internal.c.

◆ resampstr()

void resampstr ( voidPtr * SS,
int NP,
int * s )

Stratified resampling - returns a new set of indices according to the probabilities P.

Sorted re-sampling is slower but has slightly smaller variance. Stratified resampling is unbiased, almost as fast as deterministic resampling, and has only slightly larger variance.

In stratified resampling indices are sampled using random numbers [1] u_j~U[(j-1)/n,j/n], where n is length of P. Compare this to simple random resampling where u_j~U[0,1].

Warning
This function assumes that the weights have been normalised!
Parameters
[in]SSArray of particle structures; NP x 1
[in]NPNumber of particle structures
[out]sResampled indices; NP x 1
See also
[1] Kitagawa, G., Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models, Journal of Computational and Graphical Statistics, 5(1):1-25, 1996.

Original Copyright (c) 2003-2004 Aki Vehtari (GPLv2)

Definition at line 526 of file saf_tracker_internal.c.

◆ tracker3d_getMaxParticleIdx()

int tracker3d_getMaxParticleIdx ( void *const hT3d)

Returns the index of the most important particle.

Parameters
[in]hT3dtracker3d handle
Returns
index of the most important particle

Definition at line 499 of file saf_tracker_internal.c.

◆ tracker3d_particleCopy()

void tracker3d_particleCopy ( void * hPart1,
void * hPart2 )

Copies particle structure "hPart1" into structure "hPart2".

 

Parameters
[in]hPart1Particle structure 1  
[in]hPart2Particle structure 2

Definition at line 165 of file saf_tracker_internal.c.

◆ tracker3d_particleCreate()

void tracker3d_particleCreate ( void ** phPart,
float W0,
float dt )

Creates an instance of a particle / Monte-Carlo Sample.

 

Parameters
[in]phPart(&) address of particle structure
[in]W0Importance weight PRIOR
[in]dtTime step

Definition at line 128 of file saf_tracker_internal.c.

◆ tracker3d_particleDestroy()

void tracker3d_particleDestroy ( void ** phPart)

Destroys an instance of a particle / Monte-Carlo Sample.

 

Parameters
[in]phPart(&) address of particle structure

Definition at line 185 of file saf_tracker_internal.c.

◆ tracker3d_particleReset()

void tracker3d_particleReset ( void * hPart)

Resets a particle structure to defaults.

 

Parameters
[in]hPartParticle structure

Definition at line 149 of file saf_tracker_internal.c.

◆ tracker3d_predict()

void tracker3d_predict ( void *const hT3d,
int Tinc )

Prediction step.

 

Parameters
[in]hT3dtracker3d handle
[in]TincNumber of time steps to increment by

Definition at line 202 of file saf_tracker_internal.c.

◆ tracker3d_update()

void tracker3d_update ( void *const hT3d,
float * Y,
int Tinc )

Prediction update.

 

Parameters
[in]hT3dtracker3d handle
[in]YNew observation/measurement; 3 x 1
[in]TincNumber of time steps to increment by

Definition at line 357 of file saf_tracker_internal.c.