SAF
|
Internal source for the Spherical Harmonic Transform and Spherical Array Processing module (SAF_SH_MODULE) More...
Go to the source code of this file.
Functions | |
float | wigner_3j (int j1, int j2, int j3, int m1, int m2, int m3) |
Computes the Wigner 3j symbol through the Racah formula found in http://mathworld.wolfram.com/Wigner3j-Symbol.html, Eq.7. | |
void | gaunt_mtx (int N1, int N2, int N, float *A) |
Constructs a matrix of Guant coefficients. | |
float | getP (int M, int i, int l, int a, int b, float R_1[3][3], float *R_lm1) |
Helper function for getSHrotMtxReal() | |
float | getU (int M, int l, int m, int n, float R_1[3][3], float *R_lm1) |
Helper function for getSHrotMtxReal() | |
float | getV (int M, int l, int m, int n, float R_1[3][3], float *R_lm1) |
Helper function for getSHrotMtxReal() | |
float | getW (int M, int l, int m, int n, float R_1[3][3], float *R_lm1) |
Helper function for getSHrotMtxReal() | |
void | getWnimu (int order, int mm, int ni, int mu, double *Wnimu) |
Helper function for sphESPRIT_create() | |
void | getVnimu (int order, int ni, int mu, double *Vnimu) |
Helper function for sphESPRIT_create() | |
void | muni2q (int order, int ni, int mu, int *idx_nimu, int *idx_nm) |
Helper function for sphESPRIT_create() | |
Internal source for the Spherical Harmonic Transform and Spherical Array Processing module (SAF_SH_MODULE)
A collection of spherical harmonic related functions. Many of which have been derived from the MATLAB libraries found in [1-3].
Definition in file saf_sh_internal.c.
void gaunt_mtx | ( | int | N1, |
int | N2, | ||
int | N, | ||
float * | A ) |
Constructs a matrix of Guant coefficients.
Constructs the (N1+1)^2 x (N2+1)^2 x (N+1)^2 matrix of Gaunt coefficients which represent the integral of three spherical harmonics, such as G^q_{q',q''} = int_Omega Y_{q'}Y_{q''}Y^*_{q} mathrm{d} Omega.
With Gaunt coefficients, the spherical harmonic coefficients of the product of two spherical functions can be given directly as a linear relationship between the harmonic coefficients of the two functions.
[in] | N1 | Order of first harmonic coeffient |
[in] | N2 | Order of second harmonic coefficient |
[in] | N | Target order |
[out] | A | Gaunt matrix; FLAT: (N1+1)^2 x (N2+1)^2 x (N+1)^2 |
Definition at line 100 of file saf_sh_internal.c.
float getP | ( | int | M, |
int | i, | ||
int | l, | ||
int | a, | ||
int | b, | ||
float | R_1[3][3], | ||
float * | R_lm1 ) |
Helper function for getSHrotMtxReal()
Definition at line 151 of file saf_sh_internal.c.
float getU | ( | int | M, |
int | l, | ||
int | m, | ||
int | n, | ||
float | R_1[3][3], | ||
float * | R_lm1 ) |
Helper function for getSHrotMtxReal()
Definition at line 182 of file saf_sh_internal.c.
float getV | ( | int | M, |
int | l, | ||
int | m, | ||
int | n, | ||
float | R_1[3][3], | ||
float * | R_lm1 ) |
Helper function for getSHrotMtxReal()
Definition at line 197 of file saf_sh_internal.c.
void getVnimu | ( | int | order, |
int | ni, | ||
int | mu, | ||
double * | Vnimu ) |
Helper function for sphESPRIT_create()
Definition at line 315 of file saf_sh_internal.c.
float getW | ( | int | M, |
int | l, | ||
int | m, | ||
int | n, | ||
float | R_1[3][3], | ||
float * | R_lm1 ) |
Helper function for getSHrotMtxReal()
Definition at line 235 of file saf_sh_internal.c.
void getWnimu | ( | int | order, |
int | mm, | ||
int | ni, | ||
int | mu, | ||
double * | Wnimu ) |
Helper function for sphESPRIT_create()
Definition at line 268 of file saf_sh_internal.c.
void muni2q | ( | int | order, |
int | ni, | ||
int | mu, | ||
int * | idx_nimu, | ||
int * | idx_nm ) |
float wigner_3j | ( | int | j1, |
int | j2, | ||
int | j3, | ||
int | m1, | ||
int | m2, | ||
int | m3 ) |
Computes the Wigner 3j symbol through the Racah formula found in http://mathworld.wolfram.com/Wigner3j-Symbol.html, Eq.7.
[in] | j1 | Wigner 3 j-symbol, j1 |
[in] | j2 | Wigner 3 j-symbol, j2 |
[in] | j3 | Wigner 3 j-symbol, j3 |
[in] | m1 | Wigner 3 j-symbol, m1 |
[in] | m2 | Wigner 3 j-symbol, m2 |
[in] | m3 | Wigner 3 j-symbol, m3 |
Definition at line 45 of file saf_sh_internal.c.