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Abstract—Spatial audio coding and reproduction methods
are often based on the estimation of primary directional and
secondary ambience components. This paper details a study
into the estimation and subsequent reproduction of the ambient
components found in ambisonic sound scenes. More specifically,
two different ambience estimation approaches are investigated.
The first estimates the ambient Ambisonic signals through a
source-separation and spatial subtraction approach, and there-
fore requires an estimate of both the number of sources and
their directions. The second instead requires only the number of
sources to be known, and employs a multi-channel Wiener filter
(MWF) to obtain the estimated ambient signals. One approach
for reproducing estimated ambient signals is through a signal
processing chain of: a plane-wave decomposition, signal decor-
relation, and subsequent spatialisation for the target playback
setup. However, this reproduction approach may be sensitive
to spatial and signal fidelity degradations incurred during the
beamforming and decorrelation operations. Therefore, an optimal
mixing alternative is proposed for this reproduction task, which
achieves spatially incoherent rendering of ambience directly
for the target playback setup; bypassing intermediate plane-
wave decomposition and excessive decorrelation. Listening tests
indicate improved perceived quality when using the proposed
reproduction method in conjunction with both tested ambience
estimation approaches.

Index Terms—ambisonics, spatial audio, microphone array
processing

I. INTRODUCTION

Separating multi-channel audio content into primary and
ambient components, along with the estimation of related
parameters, has been an integral part of a number of spatial
upmixing [1]–[4] and parametric spatial audio reproduction
methods [5]–[7]. Primary components, expressing spatially
localisable sounds, are re-spatialised based on their estimated
directions, whereas the ambience is reproduced in a diffuse
manner over the target setup; often through the use of decorre-
lators. For ambisonic [8] recordings, in the simplest case, the
separation model may comprise a single plane-wave source
and an isotropic diffuse field for each time-frequency bin,
as employed, for example, by the Directional Audio Coding
(DirAC) method [5]. In the first formulation of DirAC, which
was intended mainly for low-bitrate applications, an omnidi-
rectional signal is separated into a primary directional stream
and an ambience stream, based on a single-channel time-
frequency mask. This mask is directly dictated by estimates
of a diffuseness parameter. The isotropic ambient stream is
then rendered based on distributing decorrelated copies of

the monophonic signal to all channels of the playback setup.
Subsequent DirAC formulations instead featured anisotropic
ambient stream rendering by using the full ambisonic input [9].
These formulations apply the same single-channel diffuseness
mask to all ambisonic channels, followed by spatially decoding
them to a virtual loudspeaker arrangement. These virtual
loudspeaker channels are then decorrelated and spatialised for
the target playback setup.

An alternative model for ambience estimation was explored
by the Coding and Multi-Parameterisation of Ambisonic
Sound Scenes (COMPASS) method [6], which relies on first
estimating a variable number of directional source signals;
followed by re-encoding them and spatially subtracting them
from the original ambisonic signals. This approach resembles
the blocking matrix of linearly-constrained minimum variance
spatial filtering, and can achieve improved primary-ambience
separation compared to the single-channel diffuseness mask;
provided that the estimation of the source signals is robust.
This particular ambience estimation approach therefore relies
on both source number estimation, applied per time-frequency
tile, and subsequent direction-of-arrival (DoA) estimation of
the detected sources. Source number estimation is typically
performed through the analysis of the eigenvalues of the spatial
covariance matrix of the array or ambisonic signals [10].
The identification of dominant eigenvalues and the respective
eigenvectors then permits the segregation of the signal and
noise subspaces, which are a common input for DoA estima-
tion [11], [12] and spatial filtering methods [13], [14].

This subspace processing paradigm also gives rise to an
alternative primary-ambience decomposition approach, which
does not require DoA estimation. In the simplest case, the
noise subspace eigenvalues and eigenvectors can be made
to re-assemble a spatial covariance matrix corresponding to
the scene ambience [14]. The ambient signals may then be
estimated using a MWF. Alternatively, the method proposed
in [15] avoids hard thresholding between the signal and noise
subspace by instead devising a smooth eigenvalue weighting
scheme, which aims to suppress strong directional components
present in the input ambisonic signals. The approach, there-
fore, forgoes the need to estimate the number of sources. The
method was, however, presented in the context of acoustic
spatial visualisation, rather than for high-quality reproduction
purposes. Similar subspace modeling and separation of ambi-
ence has also been used recently for virtual translation in a



higher-order ambisonic recording [16].
Regardless of how ambient signals are estimated, the re-

production of them is often conducted through: a plane-
wave decomposition, decorrelation, and subsequent spatiali-
sation over the intended playback setup; as employed, for
example, by the DirAC formulation detailed in [9], and by
the COMPASS method [6]. However, it is highlighted that
high-quality decorrelation is challenging in practice, and any
artefacts incurred during such operations will be aggregated at
the output. This is then exacerbated by the need to conduct the
plane-wave decomposition over many directions to preserve
potential anisotropy of the ambience. In acknowledgement of
these issues, an optimised covariance domain framework was
proposed in [17], which aims to both appropriately reproduce
spatially segregated audio streams, while also minimising
the amount of decorrelated signal energy in the output. The
framework has been previously employed by the DirAC for-
mulations detailed in [18], [19], and also for the closed-form
solution of a linearly and quadratically constrained decoder
described in [7]. These previous formulations all employ a soft
time-frequency mask to segregate the primary-ambience com-
ponents, with the covariance domain framework used to solve
the whole rendering problem; i.e. to render both the directional
source and diffuse ambient components. However, for methods
which estimate source or primary signals differently, with the
aim of modifying them separately or remixing them, as with
COMPASS (or other source separation approaches [20]), it
may be beneficial to use the framework for the task of spatially
enhancing, and reducing decorrelated signal energy, for only
the ambience present in Ambisonic recordings.

Therefore, in this paper, the covariance domain framework
described in [17] is investigated for the task of reproducing
the ambience of sound scenes; using two different ambience
estimation approaches. A multiple-stimulus test was conducted
whereby reference binaural simulations were compared to
first-order magnitude-least squares (MagLS) [21] and first-
order COMPASS; with the latter substituting the ambient
rendering with the four combinations of the two ambience
estimation approaches and two reproduction methods1. The
results indicate that the proposed reproduction approach im-
proves the perceived quality in the majority of cases.

II. PRELIMINARIES

It is assumed that the Ambisonic receiver signals of spher-
ical harmonic order N have been first transformed into the
time-frequency domain, x(t, f) ∈ C(N+1)2×1, where t and
f denote the down-sampled time and frequency indices,
respectively. Note that the Ambisonic channel numbering
(ACN) and ortho-normalised (N3D) Ambisonics conventions
are employed for this study. The second order statistics are
then given by the spatial covariance matrices (SCM) as

Cx(t, f) = E [x(t, f)xH(t, f)], (1)

1Note that all tested ambience estimation and reproduction approaches
have been integrated into the COMPASS Binaural VST plugin, which can
be downloaded from here: https://leomccormack.github.io/sparta-site

where E [.] denotes the expectation operator, which, in practice,
involves applying temporal averaging in the range of tens of
milliseconds.

The spatial analysis is based upon the subspace decompo-
sition of the receiver SCMs as

Cx = VΣVH =

K∑
k=1

σkvkv
H
k +

(N+1)2∑
k=K+1

σkvkv
H
k , (2)

where σ1 > σ2 > ... > σ(N+1)2 are the eigenvalues in
descending order, and v are their respective eigenvectors.
Note that the signal subspace comprises the eigenvectors
Vs ∈ C(N+1)2×K corresponding to the largest K eigenval-
ues, whereas the noise subspace Vn ∈ C(N+1)2×[(N+1)2−K]

instead contains the eigenvectors corresponding to the lowest
(N + 1)2 − K eigenvalues. It is henceforth assumed that a
source number estimate K, and corresponding DoA estimates
Γs, have been determined across time and frequency, through
the application of the SORTE algorithm [10] on the eigen-
values, and MUSIC [11] using the noise subspace Vn; as
suggested and conducted by the COMPASS method [6].

A. Direct components rendering approach

The direct components of the sound scene may then be
reproduced over the target V -channel playback system as [6]

ydir(t, f) = GsDsx(t, f), (3)

where Ds ∈ CK×(N+1)2 is a matrix of beamformers and
Gs ∈ CV×K are spatialisation weights (e.g. VBAP gains
[22], binaural filters, or spherical harmonic vectors), which
correspond to the estimated DoAs. This rendering approach
for the direct components remains the same across all methods
under test in this study.

III. AMBIENCE ESTIMATION APPROACHES UNDER TEST

In this paper, two different ambience estimation approaches
are investigated for their subsequent reproduction using both
the proposed and baseline [9] ambience reproduction ap-
proaches. The first, is based on using both the source number
and DoA estimates, in order to obtain an Ambisonics repre-
sentation of the residual components in the scene, after the
source signals have been subtracted from the input [6]

x
(COMPASS)
d (t, f) = (I−YDs)x(t, f), (4)

where Y ∈ R(N+1)2×K and Ds ∈ RK×(N+1)2 are SH vectors
and beamforming weights for the estimated DoAs, and I ∈
R(N+1)2×(N+1)2 is an identity matrix. This therefore produces
ambient signals with the following SCM

C
(COMPASS)
x,d = (I−YDs)Cx(I−YDs)

H, (5)

The second approach considered is based on using a MWF
and only the source number estimates to estimate the ambient
Ambisonic signals as

x
(KT−MWF)
d (t, f) = C

(KT)
x,d C−1

x x(t, f), (6)

https://leomccormack.github.io/sparta-site


where Cx,d ∈ C(N+1)2×(N+1)2 is an estimate of the ambient
SCM using

C
(KT)
x,d = Cx −Vsdiag[σ1 − σK+1, ..., σK − σK+1]Vs (7)

where diag[.] denotes constructing a diagonal matrix from the
enclosed vector.

IV. BASELINE AMBIENCE REPRODUCTION APPROACH

Once the ambient Ambisonic signals have been estimated,
they may then be reproduced over the target playback setup,
based on spatialising a plane-wave decomposition of them, as
conducted by more recent DirAC formulations [9] and by the
COMPASS method [6]

ydiff = ψD[GdYdxd] + (1− ψ)GdYdxd, (8)

where Yd ∈ RT×(N+1)2 are spherical harmonic weights for
T directions uniformly distributed over the sphere, Gd ∈
CV×T are spatialisation gains for mapping the plane-wave
decomposed signals to the playback setup, D[.] denotes a
decorrelation operation on the enclosed signals, and ψ ∈ [0, 1]
is a diffusion level parameter dictating how much decorrelated
signal energy is introduced into the output.

The final output signals are then obtained as

y = ydir + ydiff . (9)

V. PROPOSED COVARIANCE DOMAIN BASED AMBIENCE
REPRODUCTION

In this paper, an alternative rendering approach is proposed.
Narrow-band target covariance matrices Cy,d ∈ CV×V , rep-
resenting the inter-channel dependencies and channel energies
which the ambient signals should exhibit, are first obtained as

Cy,d = Gd((YdCx,dY
H
d )⊙ F)GH

d , (10)

where ⊙ denotes the Hadamard product, and

F =


1 (1− ψ) . . . (1− ψ)

(1− ψ) 1 . . . (1− ψ)
...

...
. . .

...
(1− ψ) (1− ψ) . . . 1

 , (11)

is a T ×T matrix allowing for the same user-controllable dif-
fusion parameter used in the baseline ambience reproduction
approach, by scaling all non-diagonal elements of the plane-
wave decomposed ambient SCM by 1−ψ. It is noted that this
matrix may also be modified to permit direction-dependent
diffusion control; for example, one may apply decorrelation
to only the rear hemisphere of the recording. Although,
investigating the perceptual ramifications of exercising this
freedom was beyond the scope of the present study.

Prototype signals, which represent the starting point for the
proposed reproduction approach, are then obtained as

yproto = GdYdx, (12)

with the optimal mixing problem outlined as [17]

ydiff = Myproto +MrD[yproto], (13)

where M ∈ CV×V and Mr ∈ CV×V are the primary and
residual mixing matrices, respectively. The solution to this
problem is

argmin
M,Mr

E[||ydiff −Ayproto||2], subject to

MCprotoM
H +Mr(Diag[Cproto])M

H
r = Cy,d, (14)

where Cproto is the SCM of the prototype signals; Diag[.]
denotes the construction of a diagonal matrix, which comprises
the diagonal entries of the enclosed matrix; and

A =
(
Diag[Cy,d]Diag[Cproto]

−1
)− 1

2 , (15)

is an equalisation term to bring the prototype channel energies
to be inline with the target energies.

The primary mixing matrix may be computed as

M = KdiffVUHK−1
proto, (16)

based on the eigenvalue decompositions, or Cholesky factori-
sations, of Cy,d = KdiffK

H
diff and Cproto = KprotoK

H
proto.

The matrices U,V are obtained based on the singular value
decomposition of USVH = KH

protoAKdiff .
The residual mixing may then be obtained with

Mr = KrVrU
H
r K

−1
proto, (17)

instead using the decompositions Cy,d − MCprotoM
H =

KrK
H
r , and UrSV

H
r = KH

protoAKr.

VI. EVALUATION

A multiple-stimulus listening test was conducted to inves-
tigate the perceived differences between the two ambience
estimation methods, when combined with either the baseline
reproduction approach or the proposed covariance domain
alternative approach. Binaural reference scenarios were first
simulated using the image-source method for two different
shoebox room configurations. The first was a medium sized
10×7×4m (Width×Depth×Height) room, with RT60 times
defined in octave band as [0.5 0.55 0.5 0.35 0.2 0.15] s (from
125 Hz to 4 kHz); while the second was a large 13× 8× 4m
room, with RT60 times [0.8 0.7 0.6 0.4 0.25 0.2] s. The same
configurations were then used to obtain first-order ambisonic
signals, which were rendered to binaural using the four
possible combinations of the ambience estimation approaches
and ambience reproduction approaches under test, which were
named: compass o1, compass cm o1, kt mwf o1, kt cm o1,
where cm denotes the use of the proposed covariance matching
approach. All of which used the same direct stream rendering
as described by Eq. 3.

The methods under test were all implemented using the
90% overlap alias-free short-time Fourier transform (STFT)
described in [23], with a hop size of 128 samples and with
the additional hybrid filtering of the lower-bands to obtain 133
frequency bands in total. Signal decorrelation was achieved
through cascaded lattice all-pass filters, with longer filter
structures for lower frequencies, as described in [24]. Both
reproduction methods used ψ = 1 for all frequencies. As



TABLE I
OVERVIEW OF THE TEST CASES.

Name Ambience Estimation Ambience Reproduction
hidden ref N/A Direction binauralisation
compass cm o1 As given by Eq. 4 Proposed approach (Eq. 13)
kt cm o1 As given by Eq. 6 Proposed approach (Eq. 13)
compass o1 As given by Eq. 4 Baseline approach (Eq. 8)
kt mwf o1 As given by Eq. 6 Baseline approach (Eq. 8)
magls o1 N/A First-order MagLS decoder

TABLE II
LISTENING TEST SCENES. THE STIMULI ARE LISTED IN THE SAME ORDER

AS THEY WERE POSITIONED FROM LEFT TO RIGHT.

Name Room Source stimuli
medium speech Medium two male and two female speakers
medium mix Medium clapping, water fountain, piano, speech
medium band Medium shaker, drums, bass guitar, strings
large speech Large two male and two female speakers
large mix Large clapping, water fountain, piano, speech
large band Large shaker, drums, bass guitar, strings

a further control, the MagLS [21] approach was included
(magls o1), to represent a state-of-the-art linear decoder. Fur-
thermore, to have more parity with this control condition, the
general GdYd operations in Eqs. 8 and 12, (which would
represent virtual-loudspeaker based decoding in the present
case), were replaced with this same MagLS decoder.

The simulations were conducted using three contrasting
sets of four simultaneously played input stimuli: 1) multiple
simultaneous speakers (speech), a mix of contrasting sound
sources (mix), and a modern funk band ensemble (band).
The source positions were placed on the horizontal plane at
[90,30,-30,-90] degrees azimuth, one metre from the receiver
located in the centre of the room. Note that the test cases have
been summarised in Table I and the stimuli corresponding to
the four source positions are listed in Table II (in order of
appearance from left to right).

The listening test was divided into three parts and conducted
similarly as described in [25]. In the first part, all of the
test cases were equalised to match the reference test case,
by passing the reference signals through the same STFT and
averaging the magnitude responses over the entire simulated
recording; prior to obtaining and then applying the appropriate
equalisation curves. This operation therefore suppressed the
timbral differences between all of the test cases. The listening
test participants were asked to assess the test cases based
on their spatial similarity with the reference, and ignore any
timbral differences that they may perceive. The second part
of the test involved instead duplicating the reference case and
equalising them based on the other test cases. Therefore, the
test cases all had spatial equivalency, with the subjects instead
asked to rate them in terms of their timbral differences, and
to ignore any spatial differences that they may perceive. For
the final part of the test, the test cases were simply normalised
to the reference based on their broad-band root-mean-square
levels, and the listeners were asked to rate them based on their
personal subjective weighting of the two previously isolated
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Fig. 1. Listening test results displaying means and 95% confidence intervals.

attributes for an overall score. For all three parts, the test in-
terface had a scale between 0 and 100 and displayed the verbal
anchors: “Bad”, “Poor”, “Fair”, “Good”, and “Excellent”, in
steps of 20. The approximate duration for the three-part test
was 40 minutes.

VII. RESULTS AND DISCUSSION

The results, represented as means and 95% confidence
intervals based on 13 participants, are presented in Fig. 1 for
all three listening test parts. For the spatial test, magls o1 was
consistently rated the lowest for all tested scenes. Test cases
using the proposed reproduction approach, compass cm o1
and kt cm o1, in conjunction with the mix and band test
scenes were rated notably higher than their baseline repro-
duction approach counterparts, compass o1 and kt mwf o1.
However, this trend is less noticeable for the speech test
scenes, with all four parametric test cases rated similarly, and
within the range denoted by the “Excellent” verbal anchor.



For the timbre case, all combinations of the test cases and
test scenes were largely rated as being transparent, or near-
transparent, with respect to the reference, with the exception of
magls o1 for the mix and band test scenes. Since lower-order
ambisonics is known to result in low-pass-like behaviour [26],
this may explain the high test scores for the speech test scenes
where high-frequency content was limited. The kt cm o1 test
case was rated slightly lower for the two band test scenes, but
still largely within the range denoted as “Excellent”.

Finally, the overall test scores are more inline with the
spatial test scores, as apposed to the timbre attribute test. It
can therefore be inferred that the main differences between
the methods under test were with respect to their spatial char-
acteristics, where the proposed ambience rendering approach
is found to produce output signals that are perceptually closer
to the reference test case.

VIII. CONCLUSION

In this paper, the perceptual performance of two different
ambience estimation approaches, when coupled with one of
two different ambience reproduction approaches, was investi-
gated. The Coding and Multi-Parameterisation of Ambisonic
Sound Scenes (COMPASS) method served as a baseline,
which estimates the ambient signals through a source signal
estimation and subsequent subtraction approach; followed by
reproducing the ambient Ambisonic signals through a plane-
wave decomposition, decorrelation, and spatialisation for the
target playback setup. The method therefore relies on both
source number detection and DoA estimation. The second
ambience estimation approach under test utilised only the
information regarding the number of sources to first estimate
the ambience spatial covariance matrix, subsequently using
a MWF in order to estimate the ambient signals. These
ambient signals may then be reproduced in the same manner
as conducted by the COMPASS method. This paper then
proposes an alternative ambience reproduction approach based
on spatial covariance matching, which aims to better reproduce
the intended spatial characteristics dictated by the sound-field
model, while also reducing the use of decorrelation. This
proposed reproduction approach is general, and may be used
with any ambient signal estimation approach.

A binaural listening test was then conducted, where it is
demonstrated that the proposed ambience reproduction ap-
proach produces output signals that are perceptually more sim-
ilar to binaural reference scenarios, when compared to those
produced by the plane-wave decomposition based alternative.
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