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1Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland

2Department of Information Technology and Communication Sciences, Tampere University, Finland
3Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

leo.mccormack@aalto.fi

Abstract—This paper proposes a system for localising and
tracking multiple simultaneous acoustical sound sources in the
spherical harmonic domain, intended as a precursor for devel-
oping parametric sound-field editors and spatial audio effects.
The real-time system comprises a novel combination of a direct-
path dominance test, grid-less subspace localisation, and multiple
target tracking based on Rao–Blackwellised particle filtering. It
has robust multi-source performance and can adapt to sources
that vary in number and direction over time. The proposed
system was evaluated by using the framework established under
the LOCATA 2018 localisation and tracking challenge, and
comparing the results with the original submissions to the
challenge. The results demonstrate that the proposed system
yields the lowest angular error on the horizontal plane for both
moving source(s) tasks, and provides results close to the winning
submission for the static source(s) tasks. The proposed system
also fares well in the other LOCATA evaluation metrics, and,
more importantly, does so as a real-time system; i.e. with no
requirement for offline post-processing of the tracker data and
operating within reasonable computational constraints.

Index Terms—multi-target tracking, source localisation

I. INTRODUCTION

Accompanying direction of arrival (DoA) estimators with
data association methods (i.e. trackers) has many applications
in the fields of: speech enhancement [1], source separation [2],
[3], and acoustic scene analysis. Whereas, in the field of spatial
audio processing, solutions have traditionally relied on signal-
independent linear combinations of the input microphone array
signals to generate the target loudspeaker, binaural, or spatially
manipulated output signals. Ambisonics [4] is an example of
such a linear framework, based on first encoding microphone
recordings into spherical harmonic (SH) signals, allowing for
spatial manipulations and effects [5], followed by reproduc-
tion to headphones or arbitrary loudspeaker setups [6]. More
recently, however, signal-dependent parametric alternatives to
sound-field reproduction [7]–[10] have been shown to outper-
form their linear counterparts in perceptual tests. Many of them
are also formulated in the spherical harmonic domain (SHD),
but more importantly: all of them rely on DoA estimators
applied over time and frequency. However, associating these
DoA estimates with their respective sound sources has received
minimal attention in this spatial audio reproduction context,
despite there being certain applications where source tracking
may be useful; such as offering further opportunities for spatial
audio effects and sound-field manipulations that go beyond the

current state-of-the-art, or as a way to stabilise DoA estimates
utilised by existing parametric reproduction methods.

The focus of this work, therefore, was to develop a robust
acoustic source tracking solution, which may serve as a
precursor for undertaking these aforementioned avenues. The
task of multi-source tracking does, however, pose a number
of challenges, as a practical system should ideally operate
with minimal prior information on the complexity of the
sound scene, or the types of sound sources and their number.
Additionally, the number of active sound sources may change
over time in a musical setting, and some performances may
involve moving sources. Methods for tackling the problem of
data association include: multiple hypothesis tracking (MHT)
[11], joint probabilistic data association (JPDA) [12], [13], and
sequential Monte Carlo (SMC) based particle filtering methods
[14]–[18] and their Rao-Blackwellised variants [3], [19]–[21].
Applications of these data association methods to acoustic
tracking include the systems [22]–[26] that were submitted to
the LOCATA 2018 localisation and tracking challenge [27].
In particular, the tracking by a real-time ambisonic-based
particle filter (TRAMP) system [24] shared similar scope to
this present work, but was limited to first-order SH input
and fared less favourably regarding some LOCATA 2018
evaluation metrics compared to the other submissions.

The proposed system looks to overcome these drawbacks by
combining the direct-path test of [28] with the high-resolution
Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) method from [29]. The DoA estimates
are then fed to a particle-filter based on the Rao–Blackwellised
Monte Carlo data association (RBMCDA) method [19], [20],
which was modified to better suit real-time operation and the
intended future applications of the system. It is demonstrated
that the proposed system outperforms the TRAMP system [24]
with regard to a number of the LOCATA 2018 evaluation
metrics [30], and is also not constrained to first-order SH
input. To promote reproducible research, the ESPRIT and
modified RBMCDA implementations have also been open-
sourced1. Additionally, a real-time version of the system was
developed as a VST audio plugin2, which may serve as a
template for integrating it into other real-time systems.

1https://github.com/leomccormack/Spatial Audio Framework
2http://research.spa.aalto.fi/projects/sparta vsts/
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II. SOURCE DETECTION AND LOCALISATION

The estimation of the number of sources, a problem also
referred to as detection in sensor array processing literature,
is commonly based on the analysis of the eigenvalues or
eigenvectors of the spatial covariance matrix, or information
theoretic criteria; for a comparison of such approaches see
e.g. [31]. The approaches detailed in [31] generally err on the
side of overestimating the source number. Alternatively, direct-
path dominance testing (DPD-T) [28] may be employed, which
is less permissive, but potentially more effective at isolating
dominant sound sources under challenging conditions; such as
high noise and reverberation. Once the number of sources is
known, subspace-based localisation may be employed, such
as SHD Multiple-Signal Classification or ESPRIT [29], which
generally offer higher resolution than their steered-response
power/intensity-based counterparts; with the penalty of in-
creased implementation complexity. ESPRIT is also a grid-
less approach that directly provides the DoA estimates, which
makes it especially suited to real-time operation.

III. TARGET TRACKING

In this work, a tracking framework based on the RBM-
CDA method was employed [19], [20], which formulates
the tracking and data associations as a Bayesian estimation
problem. Here, the inference is conducted with SMC methods
(i.e. particle filtering), and the accuracy and efficiency of the
method is improved with Rao-Blackwellisation. The tracking
of the target position and velocity is conducted by feeding
DoA estimates as unit-length Cartesian vectors. Note that the
purpose of this section is to provide a summary of the frame-
work, and detail where it differs from the original toolbox
described in [32]; for a more comprehensive description of
the RBMCDA method, the reader is referred to [19], [20].

A. Multi-target filtering model

In the multiple target tracking model of K targets, it is
assumed that the dynamics of each target are given by a
Markovian model

xt,j ∼ p(xt,j | xt−1,j), j = 1, . . . ,K, (1)

where xt,j ∈ R6 denotes the state of target j at time step t,
with its values corresponding to the true target direction and
velocity in Cartesian space (x, y, z, ẋ, ẏ, ż). The single-target
dynamics are modelled using the Wiener velocity model [33],
which has the form

p(xt,j | xt−1,j) = N (xt,j | Axt−1,j ,Q), (2)

where A ∈ R6×6 and Q ∈ R6×6 are the transition matrix and
process noise covariance matrices, respectively.

The measurement model has the form

yt ∼

{
p(yt | ct = 0), when yt is clutter,
p(yt | xt,j , ct = j), when yt associated with target j

(3)
where yt ∈ R3 denotes a DoA estimate of (x, y, z) to be
fed to the tracker and ct is the (unknown) data association

indicator. Following [20], a uniform clutter model p(yt | ct =
0) = 1/V was employed, where V is a constant. The target
specific DoA measurements can be modelled with independent
linear Gaussian models

p(yt | xt,j , ct = j) = N (yt | Hxt,j ,R), (4)

where H ∈ R3×6 is the measurement matrix (i.e. truncated
identity matrix in this case, as no target velocity estimates are
passed to the tracker); and R ∈ R3×3 is the measurement
noise covariance matrix. Note that A, Q, and R are assumed
to be target and time invariant and may be tuned based on a
particular sound scene/distribution.

The aim is to estimate the current state of each target, j,
given all DoA estimates that have been presented to the tracker
thus far, by recursively computing the posterior distributions

p(xt,j | y1:t), j = 1, . . . ,K. (5)

Denoting the multiple target state as xt = (xt,1, . . . ,xt,K , λt),
where λt includes the data association and birth/death vari-
ables (cf. [20]), the Bayesian filtering solution to the multiple
target tracking problem may be initialised with the prior
distribution p(x0), and the predictive and filtering distributions
of the state of xt can be obtained recursively by the Chapman–
Kolmogorov equation and Bayesian inference (cf. [32]).

B. Particle structure and Rao-Blackwellised particle filtering

In the following, the operation of the Rao–Blackwellised
particle filter algorithm used for target tracking is described.
As in [20], the following notation is employed henceforth:
KFp(.) and KFu(.) denote a Kalman filter prediction step and
update step, respectively. KFlh(.) is then the marginal mea-
surement likelihood of p(yt | y1:t−1). The tracker framework
comprises a set of N particles, with each particle i at time
step t containing{

c, w, {m,P, T, id}j=1:K

}(i)

t
, (6)

where w is the particle importance weight; mj =
(x̂, ŷ, ẑ, ˆ̇x, ˆ̇y, ˆ̇z) and Pj ∈ R6×6 are the means and covariance
matrices for each of the currently tracked targets, respectively;
Tj ∈ I is a counter indicating how many time steps the target
has been alive for; and idj ∈ I is a unique value assigned to
each target. Note that particle filtering (see, e.g., [34], [35])
is intended to approximate complex distributions via a set of
discrete samples (particles), and can be very accurate provided
there are a sufficient number of them. It is based on the
use of importance sampling where each of the particles is
associated with an importance weight w, which is recursively
updated during filtering. If the number of effective particles
(i.e. those with high importance weight values relative to the
other particles) falls below a specified threshold (e.g., N/4),
then a re-sampling scheme is employed; whereby particles
with lower importance weights are replaced with duplicates
of particles with higher importance weights.

Rao–Blackwellised particle filters (see, e.g., [34], [35]) aim
to improve the computational efficiency of particle filtering by
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Fig. 1. The interface for the proposed real-time acoustic tracker system. DoA
estimates are depicted in red, and the two target trajectories in magenta/cyan.

solving some parts, namely the Gaussian parts, of the filtering
equations in closed form. In practice, a Rao–Blackwellised
particle filter consists of a bank of Kalman filters, which are
used to solve the conditionally Gaussian parts of the system.

C. Tracker update step

For each DoA estimate fed to the tracker, all of the particles
consider the following three possible event hypotheses: 1)
Associating the estimate as clutter with an event likelihood
related to the prior probability of noise parameter cd, which
is tuned based on the assumed performance of the localiser.
2) Associating the estimate with a new target that has the
following prior Gaussian distribution

p(xt,j) = N (x0,j |m0,j ,P0,j), (7)

where m0,j = [1, 0, 0, 0, 0, 0], i.e. assuming that the target
is directly in-front and not moving; although, in practice,
P0,j is often configured to have high positional variance
so that no specific target direction is favoured. The velocity
variance priors are tuned based on whether the input scene
comprises static or moving sound sources. A prior proba-
bility of target birth parameter, pb ∈ [0, 1], then influences
the likelihood of a target birth. In this work, the original
RBMCDA framework was modified so that should the number
of targets exceed a specified maximum number Kmax then
pb = 0. Otherwise, the likelihood of this event is calculated
with KFlh(yt,m0,j ,P0,j ,H,R). 3) Associating the estimate
with an already established target, with an event likelihood of
KFlh(yt,m

−
t,j ,P

−
t,j ,H,R), which (if chosen) would have its

target state updated with

[mt,j ,Pt,j ] = KFu(yt,m
−
t,j ,P

−
t,j ,H,R), (8)

where m−
t,j ,P

−
t,j are the predicted means and covariances.

The event hypothesis is then chosen based on drawing a
sample from the optimal importance distribution for each par-
ticle independently; the importance weights are then updated
based on their previous values and the selected event likeli-
hood, and re-normalised. It is assumed that each association is

independent of previous associations. Note that particles that
select unlikely event hypotheses for many consecutive time
steps are penalised with a reduced importance weight value
(and eventually replaced due to the employed re-sampling
scheme), whereas particles that consistently select likely events
are gradually weighted higher. Real-time tracking is then based
on the hypothesis held by the most dominant particle.

D. Tracker prediction step

For each time step, the probability of death pd ∈ [0, 1]
is computed for all active targets. This calculation considers
how long the target has been alive (Tj multiplied by time-
step delta), and is modelled based on a Gamma distribution;
thus allowing the user to influence how likely a target death
can occur to better suit a specific sound scene or application.
Additionally, the RBMCDA framework was modified so that
if a target comes too close to another target, then pd = 1
may be forced upon the younger of the two targets, which can
improve performance for static source scenarios in challenging
acoustical conditions. This may also mitigate beamformer
instabilities, should null constraints be imposed upon them
during practical use cases of the tracker. The modified frame-
work features an additional novel contribution of permitting
the possibility of more than one target death to occur during
one time step, as was suggested as future work in [32]. After
the target death checks have been conducted, the states of all
targets left alive are subjected to the following Kalman filter
prediction step

[m−
t+1,j ,P

−
t+1,j ] = KFp(mt,j ,Pt,j ,A,Q). (9)

IV. EVALUATION

The evaluation of the proposed system was based on the
framework established under the LOCATA 2018 challenge
[27], which comprises a corpus of recordings and a number
of evaluation metrics intended for assessing the performance
of localisation and tracking algorithms. The challenge results
have since been published in [30], along with the MATLAB
evaluation scripts3, thus allowing new systems to be compared
against the original submissions. Tasks 1–4 were selected for
this study, as they comprised the following respective scenarios
of interest: a single static source, multiple static sources,
a single moving source, and multiple moving sources. The
task recordings were captured using four different microphone
arrays including an Eigenmike (a commercially available 32-
capsule spherical array); the signals of which were first con-
verted into fourth-order SH signals using [36] before being
passed to the proposed system. All LOCATA 2018 recordings
comprised speech stimuli and were captured in a reverberant
room. The recordings were divided into two subsets: the
first for the purpose of algorithm development (dev), and the
second (eval) used for evaluating the submissions. The ground-
truth positional data was provided for the development data
set at the beginning of the challenge, whereas the evaluation
ground-truth was released after the challenge ended. However,

3https://github.com/cevers/sap locata eval
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TABLE I
AVERAGE AZIMUTH ERRORS AVERAGED OVER ALL RECORDINGS. THE HIGHLIGHTED ALGORITHMS INDICATE RESULTS TAKEN DIRECTLY FROM TABLE

III IN [30]. STANDARD DEVIATION σ VALUES AND THE ORIGINAL SUBMISSION IDS ARE PROVIDED WHERE AVAILABLE.

Average Azimuth Error (degrees)
Algorithm ID Task 1 (single-static) Task 2 (multi-static) Task 3 (single-moving) Task 4 (multi-moving)
4th-order ESPRIT & RBMCDA - 2.1 (σ = 1.0) 2.4 (σ = 1.5) 5.9 (σ = 4.2) 6.3 (σ = 5.0)
1st-order ESPRIT & RBMCDA - 2.5 (σ = 1.4) 6.1 (σ = 5.3) 7.9 (σ = 6.1) 8.3 (σ = 6.3)
PIV & RBMCDA - 4.0 (σ = 2.3) 5.9 (σ = 6.5) 9.4 (σ = 6.9) 7.9 (σ = 6.4)
MUSIC & PHD [22] 2 - - - 12.8
SRP-PHAT [23] 6 6.4 - 8.1 -
TRAMP (PIV & SMC) [24] 10 8.9 7.3 11.5 9.0
DPD-T & MUSIC-based [25] 12 1.1 1.4 - -
Subspace-PIV [26] 15 8.1 7.1 - -

TABLE II
RESULTS FOR THE OTHER LOCATA EVALUATION METRICS FOR THE PROPOSED SYSTEM (USING 4TH-ORDER ESPRIT), WHICH CAN BE COMPARED

VISUALLY WITH THE PLOTS FOUND IN THE LOCATA RESULTS PUBLICATION4 (CF. [30]). STANDARD DEVIATION VALUES ARE PROVIDED IN BRACKETS.

Metric Task 1 (single-static) Task 2 (multi-static) Task 3 (single-moving) Task 4 (multi-moving)
Average Elevation Error (degrees) 3.5 (σ = 1.1) 3.3 (σ = 2.1) 3.6 (σ = 2.8) 4.8 (σ = 8.3)
Track Latency (ms) 34.3 (σ = 3.9) 46.1 (σ = 5.1) 237.2 (σ = 5.3) 37.3 (σ = 1.2)
Probability of detection (%) 99.8 (σ = 0.9) 66.8 (σ = 4.6) 95.9 (σ = 1.7) 91.7 (σ = 2.4)
Fragmentation rate (frags/second) 0.057 (σ = 0.111) 0.156 (σ = 0.225) 0.036 (σ = 0.081) 0.111 (σ = 0.090)

in keeping with the spirit of the challenge, only the devel-
opment recordings and ground-truth data were used to tune
a parameter preset for each task. These presets were then
employed on the blind evaluation recordings, and the results
passed through the provided evaluation scripts.

A number of the LOCATA evaluation metrics are applicable
to the intended future applications of the proposed tracking
system. The metrics considered were: the direction estimation
accuracy, probability of detection (PD), Track Latency (TL),
and Track Fragmentation Rate (TFR). Estimation accuracy
refers to the angular errors evaluated separately for azimuth
and elevation (defined as the angle between the ground-truth
and the estimated target direction). PD refers to the percentage
of time stamps during which the source is associated with
a valid track. TL is a measure of timeliness, evaluating the
delay between the onset and the first detection of a valid
sound source; and TFR is a measure of continuity, indicating
the number of track fragmentations per second, which include
instances of tracks swapping ids, or tracks breaking. Note that
all of these metrics were computed during periods of ground-
truth voice-activity.

V. RESULTS

The azimuth angle error values for the proposed system and
the five original submissions [22]–[26] (where the Eigenmike
was employed), for Tasks 1, 2, 3 and/or 4, are presented
in Table I. Note that: in [22] (ID2), MUSIC was used for
DoA estimation, followed by a Probability Hypothesis Density
(PHD) [16] filter; [23] (ID6) applied the steered response
power using the phase transform (SRP-PHAT) algorithm; the
TRAMP system [24] (ID10) combined pseudo-intensity vector
(PIV) localisation (using first-order SH input), followed by
particle filtering; [25] (ID12) employed the DPD-T and a
MUSIC-like measure described in [1], followed by k-means
clustering; and [26] (ID15) employed the subspace-PIV ap-

proach [37]. It can be observed that the proposed system,
(using both first- and fourth-order ESPRIT), yielded lower
error values than all original submissions to the challenge for
the moving source(s) tasks, and values that are close to the
winning submission for the static source(s) tasks; although, it
will be noted that no offline processing that exploits knowledge
of static conditions was performed for the proposed system, as
was the case for the winning submission (ID12). Furthermore,
there appears to be minimal performance penalty going from
fourth-order ESPRIT to first-order ESPRIT or PIV (as used
by the closely related TRAMP system), for Tasks 1, 3 and 4.
However, the ability to employ the full input resolution for the
source localisation may be beneficial for other more complex
scenarios, and is shown to yield some additional benefit for
Task 2, where the sources were in particularly close proximity
to each other for many of the recordings.

The results of the other LOCATA metrics of interest, when
using fourth-order ESPRIT, are presented in Table II. Visually
comparing the result values with the graphs in the LOCATA
results publication4 (cf. [30]), the PD for the proposed system
is similar to ID6 and ID12; which were all slightly higher than
ID10. The TL metric is similar to all original submissions for
Task 1, and is lower than ID10 for Task 3. Finally, the TFR
results are either lower than or comparable to ID10, ID12 and
ID15 for Tasks 2 and 4.

VI. CONCLUSION

This paper has proposed an acoustic source tracking sys-
tem based on direct-path dominance testing [28] and high-
resolution subspace-based localisation [29]. The direction es-
timates are tracked using a modified version of the Rao-
Blackwellised Monte Carlo data association (RBMCDA)

4The final scores for the original submissions were not made publicly
available, outside of the tables and graphs presented in [30], or made available
to the authors upon request; hence only a visual comparison is possible.
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framework first laid out in [19], [20]. These modifications
permit the system to operate better in real-time, and tailor
it towards forthcoming work regarding flexible parametric
sound-field manipulation and spatial audio effects. The system
was evaluated by employing the LOCATA 2018 challenge
Eigenmike recordings, and using the same evaluation scripts
as used to evaluate the original submissions and presented
in [30]. It is demonstrated that the proposed system yielded
similar or better performance metric values to the winning
original submissions to the challenge. However, importantly,
the proposed system achieves these results also as a practical,
real-time and open-source implementation. Furthermore, the
tracking performance when using PIV or first-order ESPRIT
is not significantly reduced compared to the fourth-order
ESPRIT results for many of the tested scenarios; suggesting
that the modified RBMCDA tracking framework may still be
robust even when lower resolution, and computationally less
complex, localisers are employed.
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