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ABSTRACT
A method for computing and sharpening angular spectra,
derived from low-order ambisonic signals, is presented in
this paper, which is intended for high-resolution direc-
tional sound-field visualisation. The method relies on a
re-assignment principle, whereby the directional energy for
each grid point is assigned to a new direction, which cor-
responds to a direction-of-arrival (DoA) estimate within a
spatially-localised region, centred around the respective grid
point. This leads to the concentration of energy around the
true sources, and hence, to sharper angular spectra than that
of steered response power (SRP) beamformers of maximum
directivity, with the same order of ambisonic input. It is
demonstrated that the proposed method, when using low-
order input, can achieve similar results to the SRP approach
of much higher order.

Index Terms— sound-field visualisation, spatial sharpen-
ing, Ambisonics, spherical harmonic domain

1. INTRODUCTION

Many popular sound-field visualisation methods rely on com-
puting the angular spectrum, via a suitable localisation func-
tion evaluated over a dense grid of directions surrounding
the reference point. For convenience, these localisation func-
tions are often formulated in the spherical harmonic domain
(SHD), whereby the input signals form an orthonormal rep-
resentation of the sound-field, and are either synthesised or
derived from microphone array signals [1, 2]. Examples of lo-
calisation functions adapted from microphone array process-
ing to the SHD include: the steered-response power (SRP)
[3], the MUltiple SIgnal Classification (MUSIC) pseudo-
spectrum [4], and the side-lobe suppressed Cross-Pattern
Coherence (CroPaC) algorithm [5]. The output of these lo-
calisation functions may be projected onto a two-dimensional
(2D) representation of the sphere, and the relative energies,
or statistical likelihood measures, may be depicted using a
colour gradient. Bright spots in the angular spectrum infer
directions with potential sources, or prominent early reflec-
tions, and peak finding algorithms may be employed to extract
them numerically. Alternatively, the angular spectrum may
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be combined with a video stream from the same perspective;
such systems are commonly referred to as acoustic cameras
[5, 6].

This paper is primarily concerned with localisation func-
tions that can model contributions from multiple narrow-band
sources simultaneously. Subspace-methods, such as MUSIC,
are often well-suited to this task; however, they require pre-
liminary source number detection and are sensitive to off-grid
DoAs and to coherent sources or reflections [7]. The CroPaC
algorithm is generally more robust to coherent interferes [8],
but requires higher orders to sufficiently suppress the side-
lobes [5]. Regardless, selection of a dense grid resolution
may render MUSIC and CroPaC computationally prohibiting
for real-time applications, especially for large arrays. In such
cases, alternative approaches should be employed, such as it-
erative grid refinement around the expected DoAs [9].

The simplest angular spectrum may be generated utilising
SRP beamforming, which reduces to a weight-and-sum oper-
ation on the input spherical harmonic (SH) signals [3]; also
referred to as ambisonic signals. This fundamental approach
is computationally efficient and is unaffected by correlations
between sources, as it is purely an estimation of directional
power at certain directions. However, it is inherently lim-
ited by the spatial resolution of the available SH components,
as determined by the ambisonic order, which often results in
blurred spatial images at lower orders.

In this work, a method is proposed that attempts to retain
the simplicity and efficiency of the elementary SRP approach,
however, with an additional operation that sharpens the an-
gular spectrum. The result is a higher resolution spatial
image, which would normally have required a much higher
order of input and a finer beamforming grid to produce. The
approach is formulated in the SHD and is inspired by the
time-frequency re-assignment principle for high-resolution
imaging of time-frequency spectrograms [10]. Similar to
time-frequency re-assignment, the proposed method first
estimates the signal power for a certain point on the 2D
manifold of directions, as given by the beamforming oper-
ation, while also estimating a new DoA for each focusing
point. The energy of each point is then re-assigned to its new
DoA estimate, resulting in a sharper angular spectrum. The
re-assigned DoA is based on a spatially weighted acoustic
intensity vector, which expresses propagating energy flow



due to waves incident around the beamforming direction.
Such a spatially-localised intensity vector was first used for
directional analysis and sound-field reproduction in [11], and
further formulated in [12, 13]. Recently, it has been used for
DoA estimation using a histogram-clustering approach [14].
Herein, the sharpening operation is both non-parametric and
preserves the directional energy of the recording, which is a
desirable characteristic for visualisation and acoustic analysis
purposes.

2. BACKGROUND

2.1. Sound-field model and angular spectrum

It is assumed that all sources are in the far-field, with respect
to the array, and that the Ambisonic representation of the
sound-field is modelled as a continuous distribution of plane
waves with amplitudes a(γ) incident to the array, where γ de-
notes the direction vector of incidence γ ≡ (φ ,θ) at azimuth
φ and elevation θ , respectively. The Nth-order spherical har-
monic representation of this distribution is given by the spher-
ical harmonic transform (SHT) as

aN(t) = S H T {a(t,γ)}=
∫
γ

a(t,γ)yN(γ)dγ, (1)

where t is the time index, aN = [a00, ...,anm, ...,aNN]
T are the

sound-field coefficients, and
∫
γ ·dγ denotes an integration

over all directions. The vector yN denotes the (N+ 1)2 real
SHs Ynm of mode-number (n,m), up to a maximum order N,
as

yN(γ) = [Y00(γ), · · · ,Ynm(γ), · · · ,YNN(γ)]
T, (2)

where n = 0,1, · · · ,N, m = −n, · · · ,n, and (·)T denotes the
matrix or vector transpose. Spherical array processing in the
SHD operates on the plane-wave coefficients aN.

Beamforming in the SHD reduces to a weight-and-sum
operation on the ambisonic signals aN. More specifically, a
frequency-invariant beamformer with a beampattern c(γ) ap-
plied to the amplitude distribution, resulting in

s(t) =
∫
γ

a(t,γ)c(γ)dγ= cT
NaN(k), (3)

where cN = S H T {c(γ)} is the SHT of the beampattern.
Axisymmetric patterns with their main lobe oriented at γ0,
reduce to a simpler representation

cnm(γ0) = cnYnm(γ0), (4)

or equivalently
cN(γ0) = CyN(γ0), (5)

where the diagonal matrix C = diag{c0,c1,c1,c1, ...,cN}. An
expression for the beampattern is

c(γ0,γ) = yT
N(γ0)CyN(γ) =

N

∑
n=0

(2n+1)
4π

cnPn(γ0 ·γ), (6)

where Pn denotes the Legendre polynomials of degree n.
When the beamforming coefficients are simply

cn = 4π/(N+1)2 and cN(γ0) =
4π

(N+1)2 yN(γ0), (7)

the beampatterns express a directional delta function band-
limited to order N, and have the maximum directivity factor
attainable for the given order QN = (N+ 1)2. A plane wave
decomposition (PWD) of the amplitude distribution can then
be performed using such beamformers at a grid of K ≥ (N+
1)2 directions GPWD = [γ1,γ2, ...,γK ] as

sPWD(t) =
4π

(N+1)2 YT
GaN(t), (8)

where sPWD(t) = [a(t,γ1), ...,a(t,γK)]
T are the estimated

plane wave signals at the grid directions, and the matrix
YG = [yN(γ1), ...,yN(γK)] contains SH values evaluated at
the same grid directions.

For a dense grid of measurements K >> (N + 1)2, an
SRP-based estimate of the angular spectrum pSRP(t) =
[p1(t), ..., pK(t)]T can be computed based on the power of
these plane wave signals

pk(t) =
1

2T +1

t+T

∑
i=t−T

a2(i,γk), (9)

evaluated at GPWD, with 2T denoting the window length for
the local power averaging. Subsequently, the angular spec-
trum pSRP(t) can be used for acoustic analysis, source locali-
sation, and sound-field visualisation. It is evident that the spa-
tial resolution of the spatial image, obtained through PWD,
depends on the available order of the sound-field coefficients.
Due to the width of lower-order beampatterns, sound sources
can often appear spatially larger than in reality. The side-
lobes also result in erroneous depictions of sound energy for
directions that do not coincide with a source; these aberrations
may be observed in the leftward examples of Fig. 1.

2.2. Spatially-localised acoustic intensity

The active-intensity vector expresses the mean flow of energy
due to the effect of all sources and multi-path contributions
in the sound scene, and has been extensively used for spatial
sound reproduction [15, 16], and for localisation of dominant
sound sources, through the analysis of its directional statis-
tics [17, 18]. The notion of an intensity vector due to contri-
butions in a spatially-localised region of the sound-field was
introduced in [11]. It is expressed by the product of the acous-
tic pressure and acoustic particle velocity, due to a sound-field
weighted by a desired beampattern c(γ0,γ)

ic(t,γ0) =−
1

2T +1

t+T

∑
i=t−T

s(i,γ0)sxyz(i,γ0), (10)



Fig. 1: Third-order Ambisonic sound-field visualisations with PWD (left) and the proposed method up-scaled to 20th order
(middle), using a scanning grid comprised of 900 uniformly distributed points. A 20th order PWD map (right) is provided as a
visual reference. Two infinite SNR sound scenes are depicted with 4 (top) and 12 (bottom) sources, respectively.

where s(t,γ0) denotes the beamformer output for the focusing
direction γ0. The signal vector sxyz = [sX,sy,sz]

T expresses
the acoustic velocity signals for the weighted sound-field and
is given by

sxyz(t,γ0) =
∫
γ

c(γ0,γ)a(t,γ)γdγ. (11)

It is evident from (11) that to acquire these velocity signals,
the required beampatterns are given by

cxyz(γ0,γ) = c(γ0,γ)γ, (12)

which are essentially the three orthogonally-oriented dipoles
γ modulated by the beampattern of the beamformer c(γ0,γ).
This beamforming operation can be expressed directly in the
SHD by a (N+ 1)2× 3 beamforming matrix Cxyz(γ0), such
that

sxyz(t,γ0) = CT
xyz(γ0)aN(t). (13)

Conveniently, due to the fixed nature of the three orthogo-
nal dipoles, the matrix itself can be expressed as a product
between a direction-independent fixed part Dx,y,z and the co-
efficients of the beamformer cN

Cxyz(γ0) = [cx(γ0)cy(γ0)cz(γ0)]

= [Dxc(γ0)Dyc(γ0)Dzc(γ0)]. (14)

The matrices Dx,y,z depend only on the SH order of the in-
put signals, and may be pre-computed up to very high orders
of interest for a given application. More information on the
structure and construction of Dx,y,z can be found in [12], while
MatLab code, which can generate them for arbitrary orders,
can be found in [19].

3. DIRECTIONAL RE-ASSIGNMENT-BASED SRP

The proposed method is based on the SRP approach in the
SHD, using the powers (9) of the extracted plane waves.
However, instead of using the resulting angular spectrum for
localisation or acoustic visualisation and analysis, each plane
wave signal is re-assigned to a new DoA, computed through
the spatially-localised intensity vector of (10). More specif-
ically, for each PWD direction γk, the following steps are
performed:

(a) extract the amplitude a(t,γk) (8) and power Pk (9)

(b) compute the spatially-localised velocity signals sxyz(t,γk)
(13)

(c) compute the spatially-localised active-intensity vector:
ic(t,γk) from (10) and extract the re-assignment DoA for
that grid direction by nk =−ic(t,γk)/||ic(t,γk)||

(d) re-assign ak or Pk to the new DoA nk.

The manner to which this re-assignment is conducted depends
on the target application. The most computationally efficient
option is to assign the powers Pk to the target visualisation
grid by quantising the re-assignment DoA nk to the closest
target grid point. The visualisation grid, in this case, can be
of much higher resolution than the original SRP grid resolu-
tion. In cases where two re-assignment DoAs coincide, the
respective powers are simply summed to the target grid point.
In the trivial case of a single plane wave source in the scene,
all re-assignment DoAs will point to the source direction, in-
dependently of the beamforming direction, and hence all SRP
powers are combined at the same point [11]. For a proper
power preservation in this case, and assuming a uniformly ar-
ranged set of PWD/SRP directions, the beamformers should



Fig. 2: Means and 95% confidence intervals for the RMSE of the residual, derived by subtracting the angular spectra of the
PWD and proposed method from a 20th order PWD reference.

be normalised with the energy-preserving condition

βEP

K

∑
k=1
|c(γk,γ)|2 = 1 with βEP =

(N+1)2

K
. (15)

A more computationally costly alternative, which results in a
smoother visualisation, is to re-encode the re-assigned plane
wave signals into a higher-order L > N of spatial resolution,
and subsequently compute the angular spectrum via a normal
SRP on the resulting sharpened SH signals aL

aL(t) =
K

∑
k=1

ak(t,γk)yL(nk). (16)

In this case, the original SRP beamformers should meet an
amplitude-preserving condition, such that

βAP

K

∑
k=1

c(γk,γ) = 1 with βAP =
4π

K
. (17)

Some examples, when utilising third-order input and a 900
point uniform scanning grid, are shown in Fig. 1, for both
PWD and the proposed method up-scaled to 20th order.

4. EVALUATION AND DISCUSSION

The evaluation consisted of a comparison between the angu-
lar spectra derived using a low-order PWD and the proposed
method, against a high-order PWD reference case. Angu-
lar spectra were generated from synthetic ambisonic sound
scenes, with between 1 and 6 sources and differing signal-
to-noise ratios (SNR), using both second and third-order rep-
resentations. The diffuse component of the sound-field was
synthesised using 1442 approximately uniformly distributed
uncorrelated noise sources, and introduced into the simula-
tion in such a manner as to attain the target SNRs.

The proposed method case was up-scaled to 20th order as
in (16). The angular spectra computed for each scenario were
normalised and subtracted from the 20th order PWD spectra,
and the root-mean-square error (RMSE) of the residual was

computed. In total, 100 randomly generated source combina-
tions were used for the simulation; the directions for which
were derived via random indices into a 5100 point t-design
[20]. The means and 95% confidence intervals for the RMSE
for each source number and SNR are shown in Fig. 2.

It can be observed that the proposed approach yields con-
sistently lower error than PWD for almost all test cases, how-
ever, the performance benefit of the proposed method is in-
versely proportional to the SNR of the scene. The prolifer-
ation of error for the proposed approach in low SNR sound
scenes, may be attributed to the reduction in DoA estimation
accuracy in such conditions; however, the proposed approach
appears to never be worse than PWD. Furthermore, for cases
in which the sources are in close proximity to each other, the
directional energy may be migrated to an area between them,
which can be observed for the 12 sources case in Fig. 1. The
DoA estimates under low SNR conditions are also generally
biased towards the centre of the spatially-localised beampat-
tern; an analytical explanation of this phenomenon is a topic
of future research.

5. CONCLUSION

This work has presented an ambisonic sound-field visualisa-
tion approach, which combines the simplicity and efficiency
of the SRP approach with an additional sharpening operation,
based on the re-assignment of directional energy to local es-
timates of the DoA. It is demonstrated that, when compared
with a high-order reference SRP case, the proposed method
performs consistently better than the SRP approach for the
majority of cases.

Unlike many high-resolution alternatives, the proposed
method does not require an estimation of the number of
sources and makes no assumptions regarding the sound-field
conditions. Since the method is purely based on energy,
the method also works with coherent sources. Furthermore,
much of the required computations may be performed during
an initialisation stage, therefore, the run-time computational
complexity remains relatively low.
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[3] Daniel P Jarrett, Emanuël AP Habets, and Patrick A
Naylor, “3d source localization in the spherical har-
monic domain using a pseudointensity vector,” in 2010
18th European Signal Processing Conference. IEEE,
2010, pp. 442–446.

[4] Heinz Teutsch, Modal array signal processing: princi-
ples and applications of acoustic wavefield decomposi-
tion, Springer, 2007.

[5] Leo McCormack, Symeon Delikaris-Manias, and Ville
Pulkki, “Parametric acoustic camera for real-time sound
capture, analysis and tracking,” in Proceedings of the
20th International Conference on Digital Audio Effects
(DAFx-17), 2017, pp. 412–419.

[6] Adam O’Donovan, Ramani Duraiswami, and Dmitry
Zotkin, “Imaging concert hall acoustics using visual and
audio cameras,” in Acoustics, Speech and Signal Pro-
cessing, 2008. ICASSP 2008. IEEE International Con-
ference on. IEEE, 2008, pp. 5284–5287.

[7] Björn Ottersten, Mats Viberg, Petre Stoica, and Arye
Nehorai, “Exact and large sample maximum likelihood
techniques for parameter estimation and detection in ar-
ray processing,” in Radar array processing, pp. 99–151.
Springer, 1993.

[8] Symeon Delikaris-Manias and Ville Pulkki, “Cross pat-
tern coherence algorithm for spatial filtering applica-
tions utilizing microphone arrays,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 21,
no. 11, pp. 2356–2367, 2013.

[9] Kaluri V Rangarao and Shridhar Venkatanarasimhan,
“gold-MUSIC: A variation on music to accurately deter-
mine peaks of the spectrum,” IEEE Transactions on An-
tennas and Propagation, vol. 61, no. 4, pp. 2263–2268,
2013.

[10] Patrick Flandrin, Francois Auger, and Eric Chassande-
Mottin, “Time-frequency reassignment: from principles
to algorithms,” in Applications in Time-Frequency sig-
nal processing, p. 102. CRC Press, 2003.

[11] Archontis Politis, Juha Vilkamo, and Ville Pulkki,
“Sector-based parametric sound field reproduction in the

spherical harmonic domain,” IEEE Journal of Selected
Topics in Signal Processing, vol. 9, no. 5, pp. 852–866,
2015.

[12] Archontis Politis and Ville Pulkki, “Acoustic inten-
sity, energy-density and diffuseness estimation in a
directionally-constrained region,” arXiv:1609.03409,
2016.

[13] Leo McCormack, Symeon Delikaris-Manias, Angelo
Farina, Daniel Pinardi, and Ville Pulkki, “Real-time
conversion of sensor array signals into spherical har-
monic signals with applications to spatially localised
sub-band sound-field analysis,” in Audio Engineer-
ing Society Convention 144. Audio Engineering Society,
2018.

[14] Symeon Delikaris-Manias, Despoina Pavlidi, Athana-
sios Mouchtaris, and Ville Pulkki, “DOA estimation
with histogram analysis of spatially constrained active
intensity vectors,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2017 IEEE International Conference
on, 2017, pp. 526–530.

[15] Ville Pulkki, Archontis Politis, Mikko-Ville Laitinen,
Juha Vilkamo, and Jukka Ahonen, “First-order di-
rectional audio coding (dirac),” in Parametric Time-
Frequency Domain Spatial Audio, pp. 89–138. John Wi-
ley & Sons, 2017.

[16] Archontis Politis, Leo McCormack, and Ville Pulkki,
“Enhancement of ambisonic binaural reproduction us-
ing directional audio coding with optimal adaptive mix-
ing,” in IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics,, 2017.

[17] Sakari Tervo, “Direction estimation based on sound in-
tensity vectors,” in 17th European Signal Processing
Conference (EUSIPCO), 2009, pp. 700–704.
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