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Abstract—A fairly recent development in spatial audio is
the concept of dividing a spherical sound field into several
directionally-constrained regions, or sectors. Therefore, the
sphere is spatially partitioned into components that should
ideally reconstruct the unit sphere. When distributing such
sectors uniformly on the sphere, their set makes up a bank of
spatial filters, i. e. a spatial filter bank. These sectors can be
conveniently designed in the spherical harmonic domain such
that each sector preserves the local properties of the acoustic
energy-density. These traits have enabled recent improvements
in the parameterization of higher-order Ambisonics, e. g. for
spatial audio reproduction, multi-source analysis, and sound field
visualization. However, when using a set of these sectors as a
spatial filter bank, their spatial interaction incurs a scaling error
if the reconstructed sound field is not properly compensated. This
paper presents the methodology for designing a set of spatial
filters in the spherical harmonic domain, which uniformly parti-
tion the sphere. Furthermore, a new corresponding compensation
factor is derived enabling amplitude or energy preservation of
the input sound field. This allows the implementation of a novel
spatial filter bank in the spherical harmonic domain.

Index Terms—Spherical Harmonics, Ambisonics, Spatial Au-
dio, Spatial Filter Bank

I. MOTIVATION

Filters permit the ability to constrain a domain, such that
only a certain part of it is observable. With a collection of
filters one may therefore subdivide a domain into several parts.
In the time-frequency domain, e. g. , a set of time-frequency
filters can make up a filter bank that allows analysis of separate
parts of the time-frequency spectral domain [1], [2].

Generalizing this concept and applying it to the spatial
domain along a sphere, i. e. the angular domain, a set of spatial
filters may divide the sphere into its partitions. This could
lead directly to the partitioning of the surface area, e. g. by
tessellation [3]. Spatial filtering of sound fields is also termed
beamforming and a set of beamformers as a spatial filter bank
was explored for speech enhancement in [4]. Related is the
technique of Spatial PCM Sampling [5], which describes a
spatial audio recording as a set of discrete (virtual) microphone
outputs. However, spherical functions can also be described by
their angular spectrum in the spherical harmonic (SH) domain
and thus spatial filtering may be carried out directly in the SH
domain [6]. This applies directly to spatial sound fields and
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a spatial beamformer for spherical microphone arrays is also
elegantly designed in the spherical harmonics domain [7], [8].

Regarding sound fields, an emerging methodology in spatial
audio is the concept of dividing the sphere into multiple
partitions directly in the spherical harmonic (or Ambisonics)
domain. These spherical sectors can be designed such that they
spatially constrain the sound field to local estimates of the
acoustic energy-density, thus allowing to form sets of spatially-
constrained basis functions [9]. Therefore, those sectors enable
estimates of the sound field intensity contribution per region [9],
e. g. for directional spatial analysis of reverberation [10]–[12].
This principle furthermore constitutes one way of improving
methods based upon models that rely on estimating sound
field (pseudo-)intensity, e. g. for direction of arrival (DOA)
estimation [13], [14]. Without further assumptions, those
models typically extract solely a single intensity vector and
are therefore only able to describe a single point source
accurately. Subdividing the sound field into sectors thus allows
for multiple DOA estimates, potentially increasing resolution
and minimizing uncertainty [15].

This subdivision of the input sound field into sectors
has represented a convenient way to extend traditionally
first-order-only parametric sound field reproduction methods,
such as spatial impulse response rendering (SIRR) [16] and
directional audio coding (DirAC) [17], utilizing the higher
spatial resolution afforded by higher-order SH input. Thereby
extracting multiple spatially localized active intensity vectors
leads directly to the sector-based spatial audio processing
explored in [18], [19]. It is therefore crucial that merging
the individual sectors results in reconstructing the original
spherical sound field properties.

Typically, filter banks may suffer from a non-uniform
amplitude or energy total response as well as scaling issues.
Spatially uniform reconstruction is generally provided by
sufficient uniform covering [18]. However, due to the limited
spatial bandwidth of designs in the spherical harmonics domain,
the sector designs employed in the aforementioned works will
inevitably result in a scaled version of the unit sphere; often
varying drastically depending on the chosen sector design
patterns. Therefore, there is a systematic scaling error between
the input and output sound fields; and since certain applications
may benefit from arbitrary sector patterns, e. g. higher-order
cardioids, they need a flexible and efficient compensation
technique.
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Figure 1. Sector layout consisting of uniformly distributed normalized maxrE
sector beamformers, capable of preserving amplitude up to N = 2.

While the literature has previously reported briefly on the
topic of compensation factors for energy preservation [18,
Sec. Appendix], it has not yet been investigated for amplitude
preservation. Other previous works that did not include an
analytic solution, but rather a least-squares approximation,
will also vary in their performance when employing arbitrary
sector patterns [15]. Therefore, this paper demonstrates a design
methodology dividing the sphere with a set of beamformers,
forming a spatial filter bank in the SH domain. An analytical
formulation is derived that restores correct scaling dependent
on the beamformer design.

A. Objectives

There are two main objectives for the reconstruction of a
unit sphere divided by spatial weighting. First, reconstruction
of the amplitude, or reconstruction of the energy (domain of
squares).

This means, for all points on the unit sphere Ω = [φ, θ], with
azimuth φ and zenith/colatitude θ, the sum over the weighting
w of sectors ξ = 1, . . . , J shall return the unit sphere.

The objective translates to preserving amplitude

J∑

ξ=1

βAwξ(Ω) = 1, ∀Ω ∈ S2 , (1)

or preserving energy

J∑

ξ=1

βEw
2
ξ(Ω) =

J∑

ξ=1

[√
βEwξ(Ω)

]2
= 1, ∀Ω ∈ S2 , (2)

respectively. Choosing a uniform sector layout simplifies the
reconstruction factors β to a single sector independent scalar
value. As introduced before, a spatial weighting w will be
chosen dependent on the application and conveniently as
beamformers in the spherical harmonic domain, which requires
reconstruction scaling correction. The factors β are the main
focus of this document, as they restore scaling to unity.

II. BACKGROUND

This paper uses the orthonormal spherical harmonic basis
functions Y mn of order n and degree m given as [20, Eq. (6.20)]

Y mn (Ω) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos(θ))eimφ , (3)

where Pmn is the associated Legendre polynomial including the
Condon-Shortley phase. The corresponding spherical harmonic
transform and inverse transform are given in [21, Eq. (1.40)
and (1.41)], where N is the maximum SH order.

Parseval’s relation of the functions f, g relates the discrete
and spherical harmonic domain as [21, Eq. (1.44)]

∫

S2
f (Ω)g∗(Ω) dΩ =

N∑

n=0

n∑

m=−n
fnmg

∗
nm = gH

nmfnm . (4)

The spherical harmonics addition theorem is given as [21,
Eq. (1.26)]

n∑

m=−n
[Y mn (Ω)]∗Y mn (Ω′) =

2n+ 1

4π
Pn(cos(Θ)) , (5)

where the angle Θ = ∠(Ω,Ω′) and Pn the degree n Legendre
polynomial.

Due to orthonormality, the integration of spherical harmonics
∫

S2
Y mn (Ω) dΩ =

√
4πδn0 (6)

vanishes for all components, except n = m = 0 [21,
Eq. (1.22)].

The latter can be carried out as a numerical integration by
quadrature grids, e. g. with uniform nodes at Ωj on a spherical
t-design [22], [23] as

∫

S2
f(Ω) dΩ =

4π

J

J∑

j=1

f(Ωj) . (7)

Equation (6) and Eq. (7) give

∫

S2
Y mn (Ω) dΩ =

4π

J

J∑

j=1

Y mn (Ωj)

J∑

j=1

Y mn (Ωj) =
J√
4π
δn0 .

(8)

For the spatial weighting, axisymmetric spherical array beam
patterns can be described by their N beamforming weights or
modal weighting coefficients cn as [21, Eq. (5.24)]

w(Θ) =

N∑

n=0

2n+ 1

4π
cnPn(cos(Θ)) . (9)
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Figure 2. Cross-section (θ = π/2, i. e. x-y-plane) of a spatial filterbank with
second order maxrE sector beamformers and their amplitude summation,
with and without the compensation factor βA.

III. METHODS

A. Number of Sectors

The minimal number of sectors J necessary for recon-
struction depends on the numerical integration quadrature in
Eq. (7). Energy preservation demands for a quadrature capable
of integrating f(Ω) of degree 2N . Amplitude preservation
only requires a quadrature for degree N + 1. However, a
quadrature of higher order also integrates correctly, meaning
for every order N > 0, 2N >= N + 1, hence, a quadrature
allowing energy preservation also allows amplitude preservation.
This study uses uniformly distributed sector steering directions
Ωξ = Ωj further on.

B. Spatial Weighting of Selected Patterns

An axisymmetric beamformer is characterized by its order
dependent weighting cn, compare Eq. (9). The simplest beam-
former of that kind is the normalized plane-wave decomposition
(PWD), also called max DI, which results in a higher order
hyper-cardioid pattern. The modal weighting is a constant factor
of [21, Eq. (6.10).]

cn =
4π

(N + 1)2
. (10)

A higher order cardioid pattern might be expressed in the
discrete domain as

w(Θ) = (A+ (1−A) cos(Θ)N ,with A = 0.5 . (11)

This leads to the axisymmetric beamformer in the spherical
harmonics domain with

cn =
4πN !N !

(N + n+ 1)!(N − n)!
. (12)

A popular choice in spatial audio is the maxrE pattern,
with similar properties as super-cardioids, however, the modal
weighting is directly given as [24, Eq. (10)]

cn = Pn(cos(
2.4068

N + 1.51
)) , (13)

where the two constants were numerically optimized. The
criterion, however, did not ensure unit amplitude in steering
direction. While strictly speaking not necessary for the deriva-
tion found in this document, any axisymmetric pattern may be
normalized in steering direction by a weighted band-limited
spatial Dirac anorm =

∑N
n=0 cn

2n+1
4π . Such sector pattern for

N = 2 is shown in Fig. 1 and 2 and used exemplary throughout
this document.

C. Amplitude Preservation Factor

Spatial weighting summed over all sectors ξ simplifies
because of uniform pattern distribution to

J∑

ξ=1

wξ(Ω) =

J∑

ξ=1

w(αξ) , (14)

where αξ = ∠(Ωξ,Ω). With Eq. (9) this becomes

=

J∑

ξ=1

N∑

n=0

cnPn(cos(αξ)) . (15)

Comparing with Eq. (5) and reordering gives

J∑

ξ=1

N∑

n=0

cn

n∑

m=−n
[Y mn (Ω)]∗Y mn (Ωξ) =

N∑

n=0

cn

n∑

m=−n
[Y mn (Ω)]∗

J∑

ξ=1

Y mn (Ωξ) . (16)

Evaluating the sum over J as in Eq. (8), due to orthogonality
of spherical harmonics, components n > 0 vanish and only
the zeroth order components remain

J∑

ξ=1

wξ(Ω) = c0Y
0
0 (Ω)∗

J√
4π

. (17)

As Y 0
0 (Ω) =

√
4π
−1

, the sum over the amplitude of all sectors
becomes

J∑

ξ=1

wξ(Ω) = c0
J

4π
. (18)

Under the objective Eq. (1) this leads directly to the compen-
sation factor for amplitude preservation

βA =
4π

c0 J
. (19)
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D. Energy Preservation Factor

This is shown in [18, Appendix], however, there with
a different definition of Eq. (9), and hence not with the
beamforming modal weights cn.

Analogues to the amplitude factor, but substituting the
squared pattern w2 = d, the sum over all sectors results in

J∑

ξ=1

w2(αξ) =

J∑

ξ=1

d(αξ) = d0
J

4π
. (20)

Under the objective Eq. (2), the compensation factor for energy
preservation may be formulated as

βE =
4π

d0 J
. (21)

E. Recovering From SH Beampattern

In case the modal weighting cn is unavailable, the com-
pensation factors can be alternatively retrieved from any
axisymmetric SH sector beampattern vector wnm in sector
steering direction Ωξ

wnm = diagN (cn)ymn (Ωξ)
H . (22)

The operator diagN (·) expands every vector (order) entry m
times to a diagonal matrix, therefore

βA =

[ J∑

ξ=1

wξ(Ω)

]−1
=

4π

c0 J
=

√
4π

w00 J
. (23)

Re-substituting d = w2 and using Parseval’s relation Eq. (4),
the modal weighting is expanded to

d0 = Y 0
0 (Ω)−1

∫

S2
w2(Ω)Y 0

0 (Ω)dΩ = wH
nmwnm , (24)

yielding the alternative form

βE =

[ J∑

ξ=1

w2
ξ(Ω)

]−1
=

4π

d0 J
=

4π

wH
nmwnmJ

=
Qc
J

, (25)

with the directivity factor

Qc =
4π∫

S2 w
2(Ω)dΩ

=
4π

wH
nmwnm

. (26)

An amplitude independent directivity factor can be found in [21,
Eq. (5.30)].

Another interesting observation follows directly from Eq. (23)
and Eq. (25), in combination with the orthogonality property
of spherical harmonics. As a max DI beamformer (normalized
PWD) is achieved by constant modal weighting cn = 4π

(N+1)2 ,
the factors βA and βE become equivalent

βA,maxDI =
4π

c0J
=

4π

4π/(N + 1)2J
=

(N + 1)2

J
, (27)

and

βE,maxDI =
4π

wH
nmwnmJ

=

4π

(4π/(N + 1)2)2(N + 1)2/(4π)J
=

(N + 1)2

J
. (28)
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Figure 3. RMS estimates for maxrE sectors of second order. Shown is a
diffuse unit sound field plus two unit plane-waves overlaying in first and third
sector. Shown is amplitude reconstruction, with and without compensation
β = βA, compared to a reference.

IV. EVALUATION AND DISCUSSION

Ambisonic signals divided into sectors through a spatial
filter bank need a compensation factor in order to mitigate a
reconstruction scaling error, which is dependent on the chosen
design. Evaluating amplitude reconstruction of second order
maxrE patterns according to Eq. (1), Fig. 2 shows that the
individual sectors depicted in Fig. 1 sum up correctly to unit
amplitude when considering the compensation factor βA. The
amplitude reconstruction error as well as its mitigation by
applying βA is shown for varying order in table I.

Table I
AMPLITUDE RECONSTRUCTION RMS ERROR IN DB FOR maxrE PATTERNS

SH Order β = 1 β = βA

N = 1 3.339 < 0.000

N = 2 1.053 < 0.000

N = 3 2.724 < 0.000

N = 4 −0.754 < 0.000

N = 5 2.370 < 0.000

N = 6 −0.112 < 0.000

N = 7 1.238 < 0.000

N = 8 1.807 < 0.000

N = 9 2.008 < 0.000

N = 10 1.768 < 0.000

A numerical evaluation of βA (Eq. (23)) comprises inverting
the sum of sectors ad-hoc in the discrete domain on a
sufficiently dense sampling grid, i. e. numerically solving
Eq. (23) for βA. Therefore, we stack the SH sector patterns
wnm,ξ, evaluated at the grid points [q1, . . . , Q] by the inverse
spherical harmonic transform into a matrix S ∈ <Q x J . The
least-squares solution for sector weighting resulting in unit
amplitude in each sampling point (written as [1, . . . , 1]T ) is
then given as weights per sector βA,ξ stacked to a vector b

b = S† [1, . . . , 1]T , (29)
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where (·)† denotes the Moore–Penrose pseudo-inverse. In case
of a uniform layout the entries of b are equal and correspond
to the scalar factor βA. The unit sphere reconstruction was
tested and confirmed within numerical accuracy for all sector
patterns shown in this work and for orders N = 1, . . . , 10.
Table I displays the amplitude scaling error for a maxrE
sector pattern, varying along SH orders. It highlights the
importance for compensation and confirms the accuracy of βA
for amplitude recovery. We furthermore numerically confirmed
the previously derived energy preservation factor βE as in
Eq. (25). A reference implementation can be found in [25].

In signal space, Fig. 3 shows the results of an SH input signal
σnm,in(N = 2) comprised of a unit amplitude diffuse sound
field plus two unit amplitude plane-waves impinging onto the
first and third sector. All signals originated from independent
3 s (fs = 48 kHz) realizations of noise with standard normal
distribution. Therefore, the root-mean-squared (RMS) value
in each sector s(Ωj) = wH

nm,jσnm,in should be close to one,
except in sectors with additional plane-wave contributions,
where the RMS should fall close to

√
2. Deviations are expected

not only because of randomness but also because of the limited
SH order, which causes the sector signals to interfere. We
will assume the RMS directly obtained from the zeroth order
of the input signal as the reference for reconstruction. The
reconstructed RMS from the sector signals according to Eq. (1)
is then compared to this reference.

Fig. 3 reports that each sector estimates its expected contri-
bution. It also shows that neglecting the reconstruction scaling
(i. e. β = 1) results in a significant error. Incorporating the
factor βA for amplitude preservation results in numerically
accurate RMS reconstruction, for all sector patterns. This high-
lights again the usefulness of the presented spatial filterbank,
as it allows to not only estimate spatially constrained RMS
measures, but also recover the total RMS from its spatial parts.

V. CONCLUSION

This paper showed a methodology to partition a spherical
sound field into spatially constrained sectors of varying shape.
It therefore demonstrated the design of spatial filter banks
in the spherical harmonics domain which can be applied
directly to Ambisonic signals. We furthermore highlighted
the reconstruction error of such filter bank designs and derived
corresponding compensation factors for restoring amplitude and
energy preservation. The newly derived compensation factor
was confirmed to preserve the sound fields amplitude obtained
from beamformer outputs. The results form a basis for fostering
future work, e. g. in parametric spatial audio.
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